Skip to main content

Table 14 Kruskal-Wallis test (Degree in Computing)

From: Influence of algorithmic abstraction and mathematical knowledge on rates of dropout from Computing degree courses

Mean rank and homogenous subsets
Item1 Subset
1 2 3 4 5 6 7 8 9 10
17 627.524          
19 652.465          
20 662.147          
16 667.253          
15 669.7          
21 701.071 701.071         
18 779.1 779.1 779.1        
2   828.641 828.641 828.641       
10   848 848 848 848      
6    889.006 889.006 889.006 889.006     
8    891.641 891.641 891.641 891.641     
3    896.941 896.941 896.941 896.941 896.941    
13    921.859 921.859 921.859 921.859 921.859 921.859   
4    975.835 975.835 975.835 975.835 975.835 975.835 975.835  
12     994.847 994.847 994.847 994.847 994.847 994.847  
11      1041.87 1041.87 1041.87 1041.87 1041.87  
5       1055.62 1055.62 1055.62 1055.62  
14        1098.22 1098.22 1098.22  
9         1116.47 1116.47  
7          1159.87  
1           1274.92
Chi-square value 9.958 7.623 10.692 10.077 12.778 12.491 10.928 11.304 10.897 .2
Sig. (two-tailed test) 0.126 0.054 0.153 0.184 0.078 0.086 0.091 0.079 0.092 .
  1. Homogenous subsets are based on asymptotic significances. The significance level was 0.05
  2. 1Each cell indicates the mean sample position for the variable item
  3. 2This is impossible to calculate since the subset contains only one sample