
Journal of the
Brazilian Computer Society

de Matos et al. Journal of the Brazilian Computer
Society (2016) 22:8
DOI 10.1186/s13173-016-0048-1

RESEARCH Open Access

An empirical study of test generation with
BETA
Ernesto C. B. de Matos1* , Anamaria M. Moreira2 and João B. de Souza Neto1

Abstract

Background: BETA (Bbased testing approach) is a toolsupported approach to generate test cases from Bmethod
specifications through the application of input space partitioning and logical coverage criteria. The BETA tool
automates the whole process, from the design of abstract test cases to the generation of executable test scripts.

Methods: In this paper, we present an empirical study that was performed to evaluate and contribute to the
development of BETA. The study evaluated the applicability of BETA on problems with different characteristics and
used techniques of code coverage and mutation analysis to measure the quality of the generated test cases. The
study was carried out in different rounds, and the results of each round were used as a reference for the improvement
of the approach and its supporting tool.

Results: These case studies were relevant not only for the evaluation of BETA but also to evaluate how different
features affect the usability of the approach and the quality of the test cases and to compare the quality of the test
cases generated using different coverage criteria.

Conclusions: The results of this study showed that (1) BETAgenerated test scenarios for the different criteria follow
theoretical expectations in terms of criteria subsumption; (2) the BETA implementation of the logical criteria generates
more efficient test sets regarding code and mutation coverage than the input space partitioning ones; (3) it is
important to go beyond the strict requirements of the criteria by adding some additional variation (randomization) of
the input data; and (4) the algorithms designed to combine test requirements into test cases need to deal carefully
with infeasible (logically unsatisfiable) combinations.

Keywords: Software testing, Formal methods, B-method, Empirical evaluation

Background
Industry needs reliable and robust software, increasing
the demand for methods and techniques that focus on
software quality. Formal methods and software testing are
two techniques with this purpose. Many researchers have
tried to combine these two techniques to take advantage
of their most interesting aspects ([1–16]). This combina-
tion can bring benefits such as reduction of development
costs through the application of verification techniques in
the initial development phases, when faults are cheaper
to be fixed, and automatic generation of tests from for-
mal specifications [17]. Generating test cases from formal

*Correspondence: ernestocid@ppgsc.ufrn.br
1Department of Informatics and Applied Mathematics – DIMAp, Federal
University of Rio Grande do Norte, Natal RN, Brazil
Full list of author information is available at the end of the article

specifications is very convenient. Since these specifica-
tions usually state the software requirements in a com-
plete and unambiguous way, they can be a good source to
generate test cases. This approach for test case generation
can be particularly useful in scenarios where formal meth-
ods are not strictly followed, and the code is not formally
derived from the model [18]. These tests can help to ver-
ify the conformance of the abstract model and the actual
implementation.
In [19, 20], a tool-supported approach called BETA

(B-based testing approach) is presented. BETA generates
unit tests from formal specifications written in B-method
[21] notation. Using input space partitioning and logical
coverage techniques [22], BETA generates test cases to
verify conformance between the code implemented and
the model that originated it.

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-016-0048-1-x&domain=pdf
http://orcid.org/0000-0003-1571-0550
mailto: ernestocid@ppgsc.ufrn.br
http://creativecommons.org/licenses/by/4.0/

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 2 of 17

Initially, BETA was evaluated through two case stud-
ies [19, 23]. These case studies showed the feasibility of
the approach and tool and were important for an ini-
tial evaluation. However, the final stages of the testing
process—execution of the tests and evaluation of results—
were not performed, and the evaluation was limited to the
test case design. Since there were no concrete test cases
to execute, it was not possible to assess the quality of the
proposed test cases, evaluating, for instance, code cover-
age achieved by their execution. Recently, new features
and improvements were introduced in the approach, and
it became necessary to submit BETA to new case studies.

Contributions
In this context, the work presented here extends [24] and
aims to perform an empirical study of BETA, analyzing the
whole approach and tool in new situations, focusing not
only on quantitative aspects but also on the quality of the
test cases. In [24], we evaluated a version of BETA (1.2)
which only supported input space partitioning coverage
criteria. In this paper, we include an evaluation of BETA
2.0, which contains new features (logical coverage crite-
ria and test data randomization) and improvements in the
partitioning strategies. In all, three rounds of experiments
were executed, using models with different complexity
and objectives. In the three rounds, the entire testing pro-
cess was performed, from test case design to test result
evaluation. Quality of the results was evaluated with state-
ment and branch coverage and mutation analysis [25]
metrics. Evaluation of BETA showed that the test scenar-
ios it generates for the different criteria follow theoretical
expectations in terms of criteria subsumption1. It also
indicated that the BETA implementation of logical crite-
ria generates more efficient test sets regarding code and
mutation coverage than the input space partitioning ones.
The positive evolution of BETA from previous case stud-
ies and the different rounds of the current study reinforce
the utility of such a cyclic, exploratory, process where each
evaluation generates improvement requirements which
are evaluated in new experiments, making the whole
development of BETA a case for such kind of develop-
ment process, where requirements evolve over time, a
very common situation in research projects. Finally, two
important results for criteria-based test case generation
projects concern the utility of going beyond the strict
requirements of the criteria by adding some additional
variation (randomization) of the input data and the signif-
icant influence of infeasible (logically unsatisfiable) com-
binations on coverage results, requiring the algorithms
designed to combine test requirements into test cases to
deal carefully with logically infeasible combinations.
The remainder of this paper is organized as fol-

lows: Section The B-method and the BETA tool intro-
duces the B-method and presents the BETA approach

and tool; Section Related work presents an overview
of relevant related work; Section Methods presents
the goals and methodology of the study; Section
Case Studies: presentation and results presents the
case studies performed, giving an overview of the pro-
cess and results; Section Discussions presents an anal-
ysis of the different experiments; ultimately, Section
Conclusions concludes with final discussions and future
work.

The B-method and the BETA tool
The B-method
The B-method is a formal method that uses concepts of
first-order logic, set theory, integer arithmetic, and con-
tracts defined by a generalized substitution language (GSL
[21]) to specify abstract state machines that represent a
software behavior. The consistency of these specifications
can be guaranteed by proving that some automatically
generated verification conditions are valid. The method
also provides a refinement mechanism in which machines
may pass through a series of refinements until they
reach an algorithmic implementation, called B0, which
can be automatically converted into code. Such refine-
ments are also subject to a posteriori analysis through
proofs.
A B machine usually has a set of variables that repre-

sent the software state and a set of operations to modify
the state. Restrictions on possible values that variables
can assume are formulated in the machine invariant. The
method also has a precondition mechanism for opera-
tions of a machine. To ensure that an operation behaves
as expected, it is necessary to ensure its precondition is
satisfied.
The B-method has a history of success in different “real-

world” projects [26] and is supported by mature tools
such as AtelierB2 and ProB3. These tools focus on model
specification and verification. In this paper, we evaluate
another tool called BETA—that is also a test case gen-
eration approach—which focuses on test case generation
from B models.

BETA
BETA is a model-based testing approach to generate unit
tests from B-method abstract state machines. The tool
[20] receives an abstract B machine as input and produces
test case specifications and executable test scripts written
in Java and C. BETA is capable of defining positive and
negative test cases for a software implementation. Posi-
tive test cases use input data that are valid according to
the source specification and negative test cases use input
data that are not predicted by the specification. The main
objective of the test cases generated by BETA is to ver-
ify the accordance between the code implemented—that
could be manually implemented or generated by a code

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 3 of 17

generation tool—and the abstract model that originated
it. An overview of BETA’s test generation process is pre-
sented in Fig. 1. The whole process is automated by a tool
that is also called BETA.
The approach starts with an abstract B machine, and

since it generates tests for each unit of the model individu-
ally, the process is repeated for each one of its operations.
To generate the test cases, BETA supports coverage cri-
teria based on the ones defined in [22] for two different
strategies: input space partitioning and logical coverage.
For input space partitioning, BETA uses equivalent

classes (ECS) and boundary value analysis (BVS) to cre-
ate partitions based on characteristics (restrictions applied
to the inputs of an operation under test) extracted from
the model. Table 1 presents some examples of how parti-
tions can be created. Each partition contains a set of blocks
which provide equivalent data to test a particular scenario.
The approach then uses combination criteria to com-

bine the blocks into test cases. It currently supports three
combination criteria:

• Each choice (EC): one value from each block for each
characteristic must be present in at least one test case.
This criterion is based on the classical concept of
equivalence classes partitioning, which requires that
every block must be used at least once in a test set

• Pairwise (PW): one value of each block for each
characteristic must be combined to one value of all
other blocks for each other characteristic. The

algorithm used by BETA for this criterion is the
in-parameter-order pairwise presented in [27]

• All Combinations (AC): all combinations of blocks
from all characteristics must be tested

For logical coverage, BETA inspects the model search-
ing for predicates and clauses to cover (preconditions,
conditional statements, etc.) and then applies one of the
following supported coverage criteria:

• Predicate coverage (PC): for each predicate p in the
set of predicates to cover, the set of test requirements
contains two requirements: p evaluates to true, and p
evaluates to false

• Clause coverage (CC): For each clause4 c in the set of
clauses to cover, the set of test requirements contains
two requirements: c evaluates to true, and c evaluates
to false

• Active clause coverage (ACC): for each predicate p
and each major clause ci which belongs to the clauses
of p, choose minor clauses cj so that ci determines p.
Then, the set of test requirements has two
requirements for each ci: ci evaluates to true, and ci
evaluates to false

• Combinatorial clause coverage (CoC): the complete
truth table of each predicate p in the set of predicates
to cover must be tested.

Based on the requirements imposed by each cover-
age criterion, BETA produces a set of formulas over free

Fig. 1 An overview of the BETA approach. Rectangular boxes represent steps of the process, and sheets represent input/output artifacts used
throughout the process

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 4 of 17

Table 1 Partitions in BETA

Characteristic Example Blocks/values

Equals to (ECS) Ea = Eb Ea = Eb Ea /= Eb – – – –

Is boolean (ECS/BVS) v ∈ BOOL v ∈ BOOL – – – – –

Is natural number (BVS) v ∈ NAT v = −1 v = 0 v = 1 v = MAX − 1 v = MAX v = MAX + 1

Examples of how BETA creates partitions using equivalent classes (ECS) and boundary value analysis (BVS) for three types of characteristics. The first example shows the type
of blocks that are created using ECS. The third example shows the type of blocks that are created using BVS. Typing characteristics are not partitioned, as seen on the second
example. A complete guide explaining how partitions are created for each type of characteristic can be found on BETA’s website

variables that represent input data for the operation under
test (state variables and operation parameters) that repre-
sent test case scenarios. For example, if a machine defines
a state variable x to be a natural number from 1 to 5
(x ∈ NAT ∧ x ∈ 1..5) and the tested operation has a
parameter y required to be a natural number greater than
x (y ∈ NAT∧y > x), a test case scenario may be described
as:

x ∈ NAT ∧ y ∈ NAT ∧ x ∈ 1..5 ∧ y > x

BETA then uses a constraint solver to evaluate the test
case formulas and obtain test data for them. Currently,
BETA relies on ProB [28] as a constraint solver to obtain
test data for its test cases. BETA feeds the constraint solver
the formulas it created to express the test scenarios and
the constraint solver outputs a set of values that comply
with the given constraints. For the given example, the con-
straint solver would provide values such as x = 1 and
y = 2. Additionally, BETA uses a recent functionality pro-
vided by ProB to offer a test data randomization feature
that can generate less trivial values for the parameters and
variables. For instance, the value for a simple integer array
with size three can be {3, 70, 25} with randomization on,
while it would always be {0, 0, 0} without randomization.
Once test input data is obtained, the original model

is animated using these inputs to generate oracle data
(expected test case results). The approach currently sup-
ports four strategies for oracle verifications: exception
checking (executes the test and verifies if any exception
is raised), invariant checking (verifies if the invariant is
preserved), state variables checking (verifies if the values
for the state variables are the ones expected), and return
variables checking (verifies if the values returned by the
operation are the ones expected). These strategies can be
combined to make weaker or stronger verifications.
Two recent features of BETA were not exercised via the

BETA tool on this study and are described in more detail
in [29]: the calculation of a preamble for each one of the
test cases and the concretization of the test data. The gen-
erated preamble is a sequence of operation calls that takes
the system to the intended state to execute the test case.
BETA uses information about the state required to run the
test case, extracted from the test case formulas, and then
uses ProB to find a sequence of operation calls that will

put the system in the intended state. Test data concretiza-
tion can be done manually, using the test engineers own
criteria, or automatically, using the concretization feature
in the BETA tool. When done automatically, BETA uses
the B-method’s gluing invariant to find the relationship
between abstract variables and concrete variables.
Test inputs, expected results, and preambles are then

combined into test case specifications. These specifica-
tions can either be in HTML or XML format. The HTML
test case specifications are used as a guide that helps the
test engineer to code the concrete test cases, while the
XML version can be used as input for third-party tools,
such as code generators.
Ultimately, the test cases are coded using a program-

ming language and a testing framework of the engineer’s
choice. The engineer can also use BETA’s test script gener-
ation feature that uses the XML specifications to generate
executable test scripts. BETA’s test script generator is
capable of generating test scripts written in Java and C,
using the JUnit5 and CuTest6 framework.
The BETA tool is free and open-source, runs on

Windows, Linux, and OS X, and can be downloaded on
http://www.beta-tool.info.

Related work
In [30], the authors present a recent overview of the
state of the art and a taxonomy for the classification of
model-based testing tools for requirement-based specifi-
cation languages. Their taxonomy classifies the tools in six
dimensions: modeling notations (state-based, transition-
based, stochastic, or data-flow notations), artifacts (which
can model functional behavior, extra-functional behav-
ior, or architectural descriptions), test selection criteria
(structural model coverage, data coverage, fault-based
coverage, requirements-based coverage, ad hoc test case
specification, random, or stochastic criteria), Test gener-
ation method (manual, random, based on graph search,
model-checking, symbolic execution, theorem proving, or
constraint solving), technology (online, if test case gener-
ation and execution are done in a single run or offline,
if test cases are generated and executed separately), and
mapping (test cases are either abstract or executable).
According to this taxonomy, BETA is classified as a tool
that:

http://www.beta-tool.info

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 5 of 17

• Uses a state-based or pre/post modeling notation
• Generates test cases based on artifacts that model

functional behavior
• Relies on data coverage or structural model coverage

test selection criteria
• Uses constraint solving and a set of specific

algorithms as test generation method
• Uses offline test cases
• Provides abstract and executable test cases

Other model-based testing tools in the current lit-
erature share similarities with BETA. These tools
and/or approaches were also evaluated using different
techniques. The closest ones are probably BZ-TT/LTG.
BZ-testing-tools [1] is based on boundary value analysis
of B and Z specifications, and LEIRIOS test generator7
[2, 3] is an industrial and commercial tool which derived
from BZ-TT, supporting new features such as logical cri-
teria and UML inputs. In BZ-TT, the goal is to test every
operation of the system at every reachable boundary state,
which is a system state where at least one of the state
variables has a maximum or minimum boundary value,
while LEIRIOS test generator (LTG) offers more flexible
goals. To achieve this goal, BZ-TT/LTG first computes test
targets that are the possible behaviors of the operation
under test (each conditional branch represents a different
behavior). Then, for each test target, BZ-TT/LTG applies
boundary value analysis or other criteria thus combin-
ing two test selection criteria. They both are based on
constraint solving. BETA shares many similarities with
BZ-TT/LTG, as they use the same type of model/notation
and similar test selection criteria and technology. Origi-
nally, in BZ-TT, the application of the criteria was different
and more rigid; LTG, however, seems to apply these cri-
teria in a way which is quite similar to BETA’s, with the
difference of applying them for each behavior, while BETA
includes the properties describing each behavior (the con-
ditions of the conditionals) on the material to be used
by the different criteria, i.e., these conditions are used,
together with preconditions and invariants, to describe
data properties in input space partitioning or as predi-
cates in the application of the logical coverage criteria.
BZ-TT/LTG was evaluated in academy and industry. In
[31], BZ-TT/LTG was applied to an industrial case study
in the Smart Card domain and its results were compared
with manual tests. The assessment showed that the tests
generated by BZ-TT/LTG covered 80 % of the manual
tests and saved 30 % of the test design time. Furthermore,
BZ-TT/LTG was applied in another industrial case study
[4], also in the Smart Card domain, and it was used in
academy for teaching purposes [3].
In [5], an automatic test environment for B specifica-

tions called ProTest is presented. It uses model-checking
techniques to find test sequences that satisfy its test

generation parameters. ProTest uses offline technology
and only generates abstract test cases. It requires specifi-
cations to be in a single B machine, and it is up to the user
to define the requirements to be satisfied by the test cases.
These requirements are made of operations to cover and
predicates that must hold true at the end of each test case.
In [5], the authors presented a simple case study to evalu-
ate ProTest and discuss theoretical differences concerning
other approaches.
TTF (test template framework [6]) is an approach that

generates unit tests from Z specifications. TTF is auto-
mated in the tool Fastest [7]. BETA and TTF/Fastest have
some similarities; both generate unit tests using input
space partitioning techniques and have similar steps in
their approach. The input partitioning approach is differ-
ent however. TTF uses as reference for coverage a unique
formula describing the complete set of valid data, generat-
ing a set of positive test cases, while BETA defines positive
and negative test cases by partitioning and combining spe-
cific characteristics for each input variable. TTF/Fastest
was evaluated in several case studies, mainly focused on
the evaluation of abstract test cases and comparisons with
other approaches.

Methods
The work presented in this paper aimed at performing
an empirical study to evaluate BETA, detect limitations,
and contribute to its evolution. This process was incre-
mental: (1) case studies with different characteristics were
used to analyze the general behavior of a version of
BETA and the quantity and quality of the test cases it
generated and then (2) reused to evaluate the evolution
of BETA as new features were added to the approach.
For all case studies, the difficulties and limitations found
were reported and the results were quantitatively and
qualitatively analyzed. Evaluation criteria and metrics
were:

General behavior evaluation
For which inputs the tool was not able to generate test
cases? Which steps of the approach were not supported
by the tool? How much user intervention was needed?
How hard was the process? Did the tests uncover defects?
Which features were included or improved since the pre-
vious versions?

Code coverage
Statement and branch coverage metrics are considered
baseline coverage criteria. These metrics were calculated,
using GCOV 8 and LCOV 9. GCOV is a test coverage anal-
ysis software for the C language, and LCOV is a graphical
front-end for GCOV that generates coverage reports in
HTML. The version of GCOV used was the one integrated
into Xcode 7.210, an integrated development environment

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 6 of 17

(IDE) for software development on OS X, and the version
of LCOV used was 1.2.

Mutation score
Mutation analysis is often used as reference to evaluate
other criteria due to the high quality of its results in spite
of its higher costs [22, 32]. It was performed to evaluate
the capability of the test cases to detect faults. Mutation
analysis works with fault simulation by injecting syntac-
tic changes in the program under test [22]. The program
with a syntactic change is calledmutant. Mutants are cre-
ated from the application of syntactic transformation rules
(mutation operators) in the code according to the pro-
gramming language used. A mutant is said to be killed
when a test can differentiate it from the original. If a
mutant cannot be distinguished from the original, it is
called equivalent. The ratio between the number of killed
mutants and the number of non-equivalent mutants is
calledmutation score, and it is used to measure the quality
of a test set. Since mutation analysis works with fault sim-
ulation, their results provide reliable information about
the test effectiveness [25]. The tool we used to generate
mutants in these case studies is called Milu [33] (version
3.211). Milu implements themutation operators presented
in [34]. In this work, we applied all mutation operators
supported by Milu, that are divided in four categories:
statement mutations, operator mutations, variable muta-
tions, and constant mutations, including, for instance,
the classical operators of arithmetic and logical opera-
tors replacement. The equivalent mutants were identified
manually, and the execution and analysis were performed
automatically by scripts.
Efficiency of the generated test suites, measured by the

relation between their coveragemetrics and their size, was
also considered in the final analysis, as slightly smaller
coverage results are sometimes acceptable if the corre-
sponding cost (number of test cases, in this study) is much
smaller.
The following questions were addressed in this work:

• Question 1—General evaluation of BETA: What are
the difficulties encountered during the application of
the BETA approach in its entirety, and what are the
limitations of the BETA tool?

• Question 2—Input space partitioning in BETA: How
do the BETA implementation of the partitioning
strategies and combination criteria differ in quantity
(size of the test suites) and quality (code coverage and
mutation analysis) of the results, and how recent
improvements influence these results?

• Question 3—Logical coverage in BETA: How do the
BETA implementation of the logical coverage criteria
differ in quantity (size of the test suites) and quality
(code coverage and mutation analysis) of the results?

• Question 4—Comparing logical coverage and input
space partitioning in BETA: How do the BETA
implementation of the input space partitioning and
logical coverage criteria differ from each other?
Which criteria provide better coverage and are more
capable of detecting faults?

The first question addresses practical aspects of the use
of BETA. The second and third questions address input
space partitioning criteria and logical coverage criteria
individually (only making comparisons between criteria
from the same family). The last question addresses com-
parisons between the two families of coverage criteria
(input space partitioning and logical coverage).
To answer these questions, BETA was submitted to

different rounds of two case studies: testing the C API
(application program interface) of the Lua programming
language [35] (Section Lua API) and verifying the out-
put of two code generation tools for the B-method
(Section b2llvm and C4B). These case studies comple-
mented each other for the intended evaluation. The
Lua API is a complex, “real world” problem, while the
machines used to test the code generators are simpler but
exercise the whole B notation. They presented however
a common characteristic: there is no information of any
expected behavior of the code when an operation’s pre-
condition is not respected. So, although BETA specifies
negative test cases as well as positive ones, the complete
process, including oracle generation and evaluation and
corresponding coverage metrics, was only carried out for
the positive ones. Further studies focusing on negative test
cases are planned as future work.
The first round of those case studies was presented in

[24], from which the current paper is an extension. On
this first round that we call original experiment, both case
studies (Lua API and code generators) were executed for
the first time. This experiment was performed with BETA
1.2, which only supported input space partitioning criteria
and lacked some of the current features. Its results were
the basis for a series of improvement requirements which
led to a new version of the BETA approach and tool. This
new version (BETA 2.0, presented in Section BETA) con-
tains improvements in the strategies used to create parti-
tions for input space partitioning criteria (better partitions
for case constructs, additional blocks in the partitions for
some characteristics, especially for BVS, and treatment
of nested conditions) and also supports logical coverage
criteria. BETA 2.0 also supports test data randomization
as an alternative when generating test case data. Other
features included in this version but which were not tar-
geted in our experiments are automatic oracle generation,
preamble calculation, and test data concretization.
BETA 2.0 was then used in two new rounds of exe-

cution of the case studies, still without the features for

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 7 of 17

automatic oracle generation, preamble calculation, and
test data concretization:

Improved experiment
This second round was performed with the main goals
of evaluating the influence of the improvements of BETA
partitioning criteria on its results and the quantity and
quality of BETA logical coverage criteria implementation
and to provide material for a comparison between the two
family of criteria.

Randomization experiment
BETA 2.0 supports test data randomization as an option
when generating test case data. This option was activated
on this third round to explicitly analyze the influence of
randomization on the quality of the generated test cases
with respect to the improved experiment where it was not
used. To evaluate this particular feature, each test case
generation was carried out five times and the average code
and mutation coverage obtained by the test cases were
used.
These last two experiments only concerned the code

generators case study. BETA 2.0 was however used with
some operations of the Lua API model to informally
corroborate some expected results. Also, some runs of
BETA with preamble calculation and test data concretiza-
tion were successfully executed for some operations of
the code generators case study. These individual results
cannot be generalized but are indicators of the support
provided by BETA to the test engineer.
The results for the main rounds of the case studies are

reported in Sections Lua API and b2llvm and C4B and
discussed in details in Section Discussions.

Case Studies: presentation and results
Lua API
In this case study, BETA was used to generate tests for the
C API of the Lua programming language [35]. The case
study was performed using a partial B model [36] of the
API, derived from its documentation [37], and has a total
of 23 abstract machines. The model has a level of com-
plexity that had not been explored before by BETA, such
as compound structures, complex types and values, and a
high number of operations (71 API operations).
The most critical aspect of this case study for BETA

is that Lua is dynamically typed. This flexibility does
not have a simple representation in the B-method. The
solution used in the model, similar to the one in the C
implementation of the API where a union type represents
any Lua value, is the use of the cartesian product of all
available types, with a tag indicating the actual data type,
as shown in Fig. 2. This solution leads to combinatorial
explosion difficulties, as each value of each type is a mem-
ber of an equivalence class with all combinations of values

of the other types. A Lua value of the type nil, for example,
looks like:

(LUA_TNIL �→ ((((((((nil �→ false) �→ −10) �→ LUA_
STRING1) �→ LUA_FUNCTION1) �→ LUA_
USERDATA1) �→ LUA_LIGHTUSERDATA1) �→
LUA_THREAD1) �→ LUA_TABLE1))

for all possible combinations of values for booleans, inte-
gers, LUA_STRING1, LUA_FUNCTION1, etc.
This original version of the model was submitted to

BETA, but BETA could not deal with its state space and
could not generate any tests: the constraint solver used
by the tool is not intended for such use and does not
present symbolic abstraction that would be needed to
cope with this complexity of data structures. The first
result of the Lua case study was then the identification of
this limitation of the tool.
A simplified version of the Lua APImodel was then used

to continue the case study. The simplified version is a sub-
set of the original model, where only a few of the Lua types
and their related state and operations were considered.
The reduction on the number of Lua types led to a sig-
nificant reduction on the cartesian product representing
the state space. Secondary consequences of this reduction
were that the number of abstract machines was reduced
from 23 to 11 and the number of operations was cut down
from 71 to 25 (those quantities were not limitations for
the tool, however, since tests are derived for each opera-
tion individually). With this reduction, a Lua value of the
type nil, for example, began to look like:

(LUA_TNIL �→ ((nil �→ false) �→ −10)) (1)

significantly reducing the state explosion. This reduced
model still presented some important characteristics for
the evaluation of BETA: it partially modeled real and com-
plex code, which was not formally developed, presented
a significant abstraction gap, and made use of non trivial
compounds of the B notation such as constants, auxiliary
functions and definitions (macros).

Test case generation
BETA 1.2 was capable of generating the test cases using
all partitioning strategies and combination criteria of the
simplified Lua API model.
Because this model does not use numerical ranges in the

definitions, the partitioning strategies ECS and BVS gen-
erate the same results. Figure 3 presents the total amount
of test cases generated by BETA for each combination
criteria, classified in infeasible and positive and negative
feasible test cases.

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 8 of 17

Fig. 2 Definition of the set of Lua values in the B model of the Lua API.
In line 12, the definition of the set of all Lua values, a cartesian
product between a set of type tags and the cartesian product of all
nine sets that represent specific types of Lua (lines 1 to 11)

Test case implementation
Expected results for each test case were obtained using
the method proposed by the BETA approach (animation
of the abstract machine), and the positive tests for each
one of the 25 operations were implemented.
The implementation of the test cases presented chal-

lenges related to the gap between the Lua API B model
and the Lua API standard implementation. The Lua API
has a complex implementation, and the mapping of the
variables of the API’s B model into variables of the API’s
standard implementation was not trivial. Once the con-
crete data for each test case was defined, all positive tests
were implemented and executed.

Test case execution
Some tests for three operations of the API failed (the
obtained results with the standard implementation were
different from the expected results derived from the B
model), meaning that the B model of these operations did

Fig. 3 Amount of the test cases generated by BETA in the Lua API
case study. Bar charts with the amount of infeasible test cases and
negative and positive feasible test cases generated by BETA in the Lua
API case study

not match their standard implementation. The tests gen-
erated by BETA were then capable of unmasking defects
in the Lua API B model and would have been capable
of detecting the corresponding defects on the code in
a regular development process, if the B model correctly
represents the system’s specification.
Statement and branch coverage metrics were used on

the code implementing each API operation, disregarding
any external functions used by them, which are supposed
to have been unit tested separately. Bar charts with the
average of the code coverage results are presented in Fig. 4.

b2llvm and C4B
In [38], BETA was used to contribute to the validation
of two code generation tools for the B-method, b2llvm
[39] and C4B12. Both code generators receive as input a
B implementation, written in the B0 notation and pro-
duce code (LLVM code with a C interface, for b2llvm,
and C, for C4B) as output. The tests generated by BETA
were used in [38] as oracles to verify the compliance of
the code generated by b2llvm and C4B with the original
B abstract machine. A set of 13 B modules (ATM, Sort,
Calculator, Calendar, Counter, Division, Fifo, Prime, Swap,
Team, TicTacToe, Timetracer and Wd) was used in this
evaluation.
The B modules selected use a reasonable range of struc-

tures and resources of the B-method to exercise b2llvm
and C4B, and, consequently, BETA, focus of the current
work. To generate the test cases, the abstract machines of
the 13 modules were submitted to the BETA tool and each
of the three rounds described in Section Methods (origi-
nal, improved, and randomization) were fully executed on
this case study.

Test case generation
The BETA tool was capable of generating test cases in
the three experiments. For the original experiment, BETA
generated test cases using both partitioning strategies and
all combination criteria but was not able to generate the
test cases with BVS strategy for twomodules (Division and
Prime). This issue has been fixed in BETA 2.0, which gen-
erated test cases for all 13 modules using all input space
partitioning and logical coverage strategies (improved and
randomization experiments). In this case study, some
B modules use numerical ranges, leading to different
results when BVS partitioning strategy was used instead
of ECS.
Figure 5 presents a bar chart of the total amount of

test cases generated by BETA for all 13 modules in the
original experiment, and Fig. 6 presents the same infor-
mation for the improved and randomization experiments,
which always lead to the same number of tests since the
test data randomization feature does not concern test sce-
narios generation. In both charts, it is possible to see the

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 9 of 17

Fig. 4 Statement and branch coverage of the Lua API case study. Bar charts with the average of the statement and branch coverage results
obtained with the tests generated by BETA in the Lua API case study

Fig. 5 Amount of the test cases generated by BETA in the original experiment of the b2llvm and C4B case study. Bar charts with the amount of
infeasible test cases and negative and positive feasible test cases generated by BETA in the original experiment of the b2llvm and C4B case study

Fig. 6 Amount of the test cases generated by BETA in the improved and randomization experiments of the b2llvm and C4B case study. Bar charts
with the amount of infeasible test cases and negative and positive feasible test cases generated by BETA in the improved and randomization
experiments of the b2llvm and C4B case study

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 10 of 17

amount of infeasible test cases and positive and nega-
tive feasible test cases generated by BETA for each testing
strategy.

Test case implementation
Expected results were obtained for each positive test case
of each of the three experiments (original, improved and
randomization) using the BETA approach. Implementa-
tion of the test cases was easier than in the Lua API case
study, although some modules also exercised non-trivial
mappings between abstract test data, generated by BETA,
and concrete test data. In this case, however, the B imple-
mentation of each module was available as reference for
the refinement of the test data (transformation of abstract
to concrete data).

Test case execution
For each B module, the tests generated by BETA were
executed in the LLVM code generated by b2llvm and the
C code generated by C4B. Because b2llvm is still under
development, the LLVM code for somemodules could not
be generated and the tests were not performed. Those
tests are being used by the b2llvm development team to
guide them through the development. The tests for the B
modules for which b2llvm generated code did not reveal
any defects.
C4B was capable of generating C code for all B modules,

so, all positive tests generated by BETA were executed.
The test results revealed problems in the C code generated
for the Timetracer module. This problem was reported to
the C4B development team.
The tests also found problems related to the refine-

ment process of twomodules (Prime andWd). This result,
that was not related to the code generators, shows that
BETA can be used as an alternative to complement the

validation in an otherwise not completely validated formal
development within the B-method.
To evaluate the tests generated by BETA, we used state-

ment coverage, branch coverage, and mutation analysis
as metrics. In this evaluation, only the test results for
the C code correctly generated by C4B were considered
(without the Timetracer module), since b2llvm was under
development and could not generate code for all the mod-
ules. The results of statement and branch coverage in the
three experiments are presented in Figs. 7 and 8.
Mutation analysis was performed to evaluate the capa-

bilities of the test cases to detect faults. Table 2 presents
the mutation analysis results in the three experiments.
The table shows information on the modules: number
of operations, number of non-equivalent mutants, and
mutation score by the input space partitioning and logical
coverage criteria tests in each experiment. The last row of
Table 2 presents an average of the mutation scores in each
experiment. For the original experiment, the average does
not include the modules Division and Prime because the
BETA tool did not generate tests with the strategy BVS for
them.
Figure 9 presents a bar chart with the mutation score

obtained by the tests generated by BETA with each input
space partitioning criterion and logical coverage criterion
in each experiment.

Discussions
Question 1: General evaluation of BETA—scope and tool
support
The manual application of the BETA approach is a
demanding process, as it is expected of any test design
approach. The support provided by the BETA tool, how-
ever, makes it quite easy to apply. Once a coverage cri-
terion is chosen (from a menu), the process is (semi)

Fig. 7 Statement coverage of the b2llvm and C4B case study. Bar charts with the average of the statement coverage results obtained with the tests
generated by BETA in each experiment of the b2llvm and C4B case study (original, improved, and randomization)

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 11 of 17

Fig. 8 Branch coverage of the b2llvm and C4B case study. Bar charts with the average of the branch coverage results obtained with the tests
generated by BETA in each experiment of the b2llvm and C4B case study (original, improved, and randomization)

automatic up to the generation of concrete test scripts.
As it happens with similar tools, it is totally automatic
up to the generation of the abstract data. No adaptations
or annotations in the model are needed to generate the
test cases, making it easier to apply than a user-defined
requirement-based coverage tool. Additionally, oracle
abstract values are automatically provided by the current
version of the BETA tool, so that the user does not need to
explicitly run an animator to obtain them.
BETA also supports models structured in several files,

while some of the other tools, such as ProTest, require
specifications to be contained in a single file. From that
point, the user can rely on the provided test case spec-
ifications in HTML to guide the implementation of the
concrete test cases, but then, there is the need to manually
calculate the operation calls that are needed to take the
software into the desired input state, convert the abstract
data of the specification into the concrete data required by
the implementation, and implement the test scripts.
BETA 2.0 also takes care of most of this work automat-

ically. These last features were not assessed during this
study, and the difficulties encountered confirmed their
importance and the benefits of the automation they can
provide.
In both case studies, the last stages of the BETA

approach (test data refinement and test implementa-
tion) were more challenging, since they were not fully
supported by the tool. The automatically generated test
scripts were based on the abstract models (abstract B
machines). Data concretization can be difficult when
there is a significant gap between the abstract model
and the implementation, as was the case for the Lua
API case study and for some modules of the b2llvm
and C4B case study, such as the TicTacToe mod-
ule. Even though the concretization feature was not
targeted in the case studies presented in this paper,

initial experiments have shown how this feature can
make the implementation of concrete test cases a lot
easier.
On the downside, the Lua API case study revealed that

the BETA tool suffers from state explosion problems due
to the non symbolic constraint solver used. An evalua-
tion of candidate alternatives for this task is mandatory
for solving this scalability issue. {log} [40], a constraint
logic programming language, arises from [41] as a possi-
ble alternative, but further studies are needed to see how
well it would behave in the presence of a state explosion
situation.

Question 2: Input space partitioning in BETA—quantitative
and qualitative aspects
BETA input space partitioning tests were capable of iden-
tifying faults in both case studies: problems in the Bmodel
of the Lua case study; a fault when dealing with structured
models in one of the code generators; and refinement mis-
takes in two B models of the code generators case study.
These results showed the effectiveness of BETA in those
verification and validation processes.
Regarding the number of test cases generated (Figs. 3,

5, and 6), input space partitioning results of all rounds of
the case studies correspond to what should be theoreti-
cally expected: BVS generates more tests than ECS when
numerical ranges are used in the B module; the combina-
tion criterion AC generates substantially more tests than
PW, which in turn produces more tests than EC. This
pattern was followed by a number of infeasible tests and
feasible positive and negative tests.
The corresponding quality metrics (code coverage and

mutation analysis), shown in Figs. 4, 7, 8, and 9, followed
the quantity patterns. Results also indicate that with PW,
it is possible to achieve very close results to those obtained
using AC, with smaller costs, since it may generate fewer

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 12 of 17

Table 2 Mutation analysis results

Modules
Experiment

Percentage of mutants killed—mutation score %

Equivalent classes Boundary value analysis Logical

Name Op. Mutants EC PW AC EC PW AC PC CC ACC CoC

ATM 3 11 Original 81.8 81.8 81.8 81.8 81.8 81.8 – – – –

Improved 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8

Randomization 92.7 90.9 87.3 92.7 90.9 87.3 94.5 90.9 96.4 90.9

Sort 1 123 Original 89.4 89.4 89.4 89.4 89.4 89.4 – – – –

Improved 89.4 89.4 89.4 89.4 89.4 89.4 91.1 91.1 91.1 91.1

Randomization 90.7 90.7 91.1 90.7 90.7 91.1 91.1 91.1 91.1 91.1

Calculator 6 120 Original 47.5 47.5 47.5 74.2 74.2 74.2 – – – –

Improved 46.5 46.6 46.6 71.6 71.6 71.6 46.6 46.6 46.6 46.6

Randomization 58.7 50.8 56.8 78 75 76.2 55.3 59.5 56 51.8

Calendar 1 67 Original 9 19.4 19.4 25.4 35.8 35.8 – – – –

Improved 80.6 94 94 0 35.8 35.8 94 94 94 94

Randomization 80.6 94 94 0 35.8 35.8 94 94 94 94

Counter 4 87 Original 41.4 85.1 85.1 41.4 94.2 94.2 – – – –

Improved 41.4 85.1 85.1 41.4 94.2 94.2 85.1 85.1 85.1 85.1

Randomization 45.5 86.8 87.1 43.2 95.2 97.5 71.9 80.7 75.4 78.4

Division 1 29 Original 31 31 31 – – – – – – –

Improved 31 31 31 89.6 96.5 96.5 34.5 34.5 34.5 34.5

Randomization 59.3 73.8 68.3 89.6 96.5 96.5 53.8 54.5 43.4 74.5

Fifo 2 40 Original 90 90 90 90 90 90 – – – –

Improved 90 90 90 90 90 90 90 90 90 90

Randomization 90 90 90 90 90 90 90 90 90 90

Prime 1 66 Original 34.8 34.8 53 – – – – – – –

Improved 34.8 34.8 53 0 43.9 43.9 62.1 62.1 62.1 62.1

Randomization 39.1 40.6 75.4 0 43.9 43.9 71.5 71.5 72.4 78.5

Swap 3 8 Original 100 100 100 100 100 100 – – – –

Improved 100 100 100 100 100 100 37.5 37.5 37.5 37.5

Randomization 90 85 87.5 90 85 87.5 97.5 80 87.5 95

Team 2 89 Original 68.5 68.5 68.5 68.5 68.5 68.5 – – – –

Improved 68.5 68.5 68.5 68.5 68.5 68.5 68.5 68.5 68.5 68.5

Randomization 68.8 69 69 68.8 69 69 67.9 73.3 82.7 80.2

TicTacToe 3 764 Original 0 21.9 40.3 0 20.4 40.3 – – – –

Improved 0 21.9 40.3 0 20.4 40.3 3.1 23.3 36.8 40

Randomization 0 20.5 40.5 0 18.1 41.3 3.1 23.4 36.3 40.9

Wd 3 68 Original 91.2 91.2 91.2 91.2 91.2 91.2 – – – –

Improved 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2

Randomization 90 88.8 86.5 90 88.8 86.8 86.5 87.6 88.8 86.5

Average 30 1472 Original 61.9 69.5 71.3 66.2 74.5 76.5 – – – –

Improved 63 69.5 72.6 60.3 73.6 75.3 65.5 67.1 68.3 68.5

Randomization 67.1 72.6 77.8 61.1 72.5 75.2 73.1 74.7 76.2 79.1

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 13 of 17

Fig. 9Mutation analysis results of the b2llvm and C4B case study. Bar charts with the average of the mutation scores obtained with the tests
generated by BETA in each experiment of the b2llvm and C4B case study (original, improved, and randomization)

tests. The results obtained for BETA, although derived
from a restricted set of models, are consistent with the
common knowledge that advocates that PW provides a
good cost-benefit ratio [22].
The results also showed that the improvements and cor-

rections made in the input space partitioning implemen-
tation, leading to a better treatment of some B constructs,
led to an increase on size and quality of the test suites
in the improved and randomization experiments (Fig. 9).
The improved experiment attained better coverage than
the original experiment (best results: increase of 7 % on
average branch coverage for ECS partitioning). Addition-
ally, the randomization experiment, in general, obtained
better coverage than the improved experiment with the
same number of tests (best results: increase of 8 % on aver-
age branch coverage for ECS partitioning), showing that
the randomization feature improves testing results.
In BETA 2.0, however, the average coverage obtained

with the ECS partitioning strategy was better than that
obtained with BVS, an unexpected result. This, together
with under expected code and mutation coverage, is a
consequence of a more general issue of infeasability of
test cases in BETA. The combination implementation of
BETA when generating test scenarios may lead to infeasi-
ble test case configurations. Because BVS generates some
very specific requirements corresponding to the borders
of the intervals, chances are most of the new configu-
rations end up being logically infeasible, leading to this
unexpected behavior. This issue is agravated in BVS by
the fact that infeasible (empty) blocks corresponding to
numbers greater than MAXINT or smaller than MININT
are being generated. The solution to this problem and a
general improvement on coverage results pass through a
better treatment of infeasible combinations of otherwise

satisfiable requirements (and, of course, non-generation
of infeasible blocks).
The abstraction gap between the abstract model and

its implementation may also hinder coverage results, as it
happened with the TicTacToe model. Its implementation
considered explicitly each winning situation for each Tic-
TacToe player, leading to a much more complex control
flow than the corresponding abstract operation specifica-
tion. This is a common issue in black box testing, however.
A possible solution would be to generate test cases from
implementation modules, which are more similar to the
actual code.

Question 3: Logical coverage in BETA—quantitative and
qualitative aspects
Considering the number of test cases generated by BETA
(Fig. 6), the results for the logical coverage criteria cor-
respond to what should be theoretically expected. The
CoC criterion generated a (slightly) higher number of test
cases, followed by ACC, CC, and PC. This pattern was
not strictly followed by the number of positive test cases,
since the ACC criterion appears to have generated slightly
more positive tests than CoC. It is a characteristic of the
ACC criterion that it sometimes leads to the same test sce-
nario when focusing on different clauses of the operation
under test (syntactically different but semantically equiv-
alent formulas). So, some test scenarios are counted twice,
accounting for this unexpected behavior.
The logical coverage criteria test cases were capable of

identifying the same faults that were identified by the
input space partitioning criteria. This result showed that
the test cases generated using logical coverage were effec-
tive in those verification and validation processes. Logical
coverage tests were also evaluated using statement and

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 14 of 17

branch coverage analysis and mutation analysis (Figs. 7, 8,
and 9). As was observed in the number of test cases, the
CoC criterion obtained better results, followed by ACC,
CC, and PC. However, there were no significant varia-
tions among them, with very close results when compared
with each other because the models used in the b2llvm
and C4B case study were simple, in general. Except for
the TicTacToe model, all models have predicates with only
one or two clauses. On the limit, when all predicates con-
tain a single clause, all of the logical coverage criteria
collapse into the same criterion: Predicate Coverage [22].
The absence of more complex predicates is a tendency in
programming style as observed in [42], but whether this
tendency is present in the case of B formal models is a
matter which needs further analysis.
Again, the randomization feature presented positive

influence on coverage results, of around 8 % on average
mutation coverage for the different logical criteria.

Question 4: Comparing logical coverage and input space
partitioning in BETA
BETA may generate a considerably larger number of test
cases using input space partitioning than with logical cov-
erage criteria (Fig. 6). The biggest difference is in the
number of infeasible test cases and negative feasible test
cases. Considering only positive test cases, using logical
coverage, BETA generated a number of test cases that was
close to or greater than the ones generated using input
space partitioning. In the current case studies, as men-
tioned before, only positive test cases were executed. Con-
sequently, coverage results for the tests generated using
logical coverage criteria were close to or slightly better
than the results for the ones generated using input space
partitioning criteria, as seen in Figs. 7, 8, and 9.

Threats to validity
An internal validity threat for our study was the manual
implementation of the test cases in the Lua API case study.
The gap between the model and the Lua’s API code may
have caused some mismatch between abstract test cases
as produced by BETA and concrete test cases executed on
the API implementation, influencing the obtained results.
We expect that the new features of BETA, such as the
test data concretization and test script generation, can
minimize this threat in future applications.
The techniques we used to measure the results of our

experiments were statement and branch coverage and
mutation analysis. The risk associated to that choice is
that they may not correspond to actual defect detection
capabilities of the test sets. However, they are commonly
used with this goal by the software testing community and
are considered reliable baseline references for the eval-
uation of test sets. Smaller issues, often considered as
construct validity threats, are related to the auxiliary tools

and processes used to measure code coverage and muta-
tion scores such as slightly diverging results observed with
different versions of the code coverage tool. The conclu-
sions of the study should not be affected however by those
small measurement variations. Another construct valid-
ity threat is specifically related to the Lua API case study.
The reduction of the Lua API model, forced by a state
explosion problem in the original model, had as a sec-
ondary consequence that the resulting model, although
muchmore complex than previously performed case stud-
ies was not as demanding of BETA as first expected.
As one of the main objectives of this case study was
to evaluate the behavior of BETA with a complete real
world specification, this reduction slightly hindered our
goal.
The choice of the B modules for the code generators

case study, which focused on exercising the whole B nota-
tion instead of focusing on the test generation features
of BETA, can be considered as a threat to the external
validity of this study. Because only a small percentage
of the chosen operations presented complex predicates,
we cannot conclude that differences of rigor between
the implementation of the different criteria always fol-
lows theoretical expectations. The example which pre-
sented more complex predicates did correspond to these
expectations, however, and there is no reason to think that
it would be different for other examples.

Conclusions
In this paper, we presented an empirical study to evalu-
ate a tool-supported test case generation approach called
BETA. This work continues the experiments presented on
[24], performing new experiments and revisiting old ones.
In our empirical experiments, we assessed BETA through
two case studies. The experiments were divided in three
rounds. In all of them, we evaluated the whole test case
generation approach, from design and generation of the
test cases to implementation and execution on the system
under test. In the first round of experiments, the focus
was on test cases generated using input space partition-
ing criteria. In the second round, we assessed the test
cases generated using an improved version of the input
space partitioning strategies and the new logical cover-
age criteria. Finally, in the third round, we experimented
with the new test data randomization feature. As a result
of these experiments, we presented comparisons between
the several improvements made on the tool and how they
influenced the quality of the test cases. We could also
make comparisons between the quality of the test suites
generated by different coverage criteria, with some indi-
cators in favor of logical coverage strategies, and observe
the positive influence of test data randomization and the
negative influence of infeasible combinations on coverage
results.

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 15 of 17

By using BETA, an engineer can complement the B-
method formal development process with units tests.
The unit tests generated by BETA are particularly useful
to check the conformance between the original abstract
model and the actual implementation of the system. Some
scenarios that could benefit from the use of BETA are as
follows: (1) scenarios where the proofs for the model were
not completed, (2) scenarios with manually implemented
code which may have human-introduced faults, (3) add
an extra verification layer for code produced by code gen-
erators, as we have shown in the code generators case
study, sometimes they might generate code with faults.
The automation provided by the BETA tool provides to
the engineer executable criteria-based test suites with low
cost.
The construction of the BETA approach and tool is a

nice result of an exploratory development process. On
[23], the first steps (abstract test case generation) of a pre-
liminary version the approach was applied manually by
someone not yet familiar with formal methods or the B
method, showing that it is not necessary to be an expert
in formal methods to apply it. It showed however that
a supporting tool was an essential requirement for the
success of the approach. The second case study, on [19],
presented an evaluation of those first steps on a second
version of the approach with partial tool support. Some
further requirements extracted from that study were the
need for further definitions and tool support on the steps
concerning oracles, preambles, and concretization. Now,
despite the promising results obtained by BETA after
the three rounds of experiments, it is still necessary to
improve the approach so it can generate more effective
test sets. A new set or requirements for the next cycle of
BETA’s development were then conclusions of the current
study:

• Fixing infeasible test cases: the current experiments
showed that, during the test case generation process,
test cases are lost due to infeasibility. Some of the test
formulas contain contradictions that make it
impossible to generate test data that satisfy them. In
some cases, it is possible to turn these infeasible test
formulas into feasible ones with smarter combination
algorithms. An important point of improvement is
then to enhance BETA’s combination algorithms to
avoid contradictory clauses, resulting in fewer
infeasible test cases

• Generate test cases from B implementation modules:
since B implementations represent more closely the
tested code, the ability to also generate test cases
from them would reduce the abstraction gap and
make the process of refinement of the test cases
easier. This improvement could result in less time
required to adapt and code the concrete test cases

and should also increase coverage results in cases
such as the TicTacToe problem where concretization
leads to a more complex control structure

• New improvements to the partition strategies: some
improvements in the way partitions are created
during the test generation process have already been
made. We can still improve the partitioning process
using knowledge acquired during the latest
experiments and using techniques proposed in
related work, such as [43], which enumerates a
number of partitioning strategies for different
constructs used in formal models. In another line of
work, some extra flexibility may be provided (with
the cost of greater user interaction), allowing for
user-defined partition schemas.

Also, as ongoing and future work, we plan to perform
new experiments (1) to further explore the limitations
of BETA when it comes to complexity of the models
and possibly experiment with different constraint solvers
for test data generation support, (2) focusing on recent
features that were not assessed in this paper, such as
preamble calculation and test data concretization, and
(3) regarding the negative test cases generated by the
approach.

Endnotes
1 a coverage criterion C1 subsumes C2 if every test set

that satisfies criterion C1 also satisfies C2.
2AtelierB’s website: http://www.atelierb.eu/en/
3 ProB’s website: https://www3.hhu.de/stups/prob/

index.php/The_ProB_Animator_and_Model_Checker
4 clause = logical formula with no connectives.
5 JUnit’s website: http://junit.org/
6CuTests’s website: http://cutest.sourceforge.net/
7Not publicly available.
8GCOV’s website: https://gcc.gnu.org/onlinedocs/gcc/

Gcov.html
9 LCOV’s website: http://ltp.sourceforge.net/coverage/

lcov.php
10Xcode’s website: https://developer.apple.com/xcode/
11Milu’s website: http://www0.cs.ucl.ac.uk/staff/y.jia/

Milu/
12C4B is a C code generator integrated with Atelier B,

an IDE for the B-Method.

Acknowledgements
The authors would like to thank the anonymous reviewers for the valuable
feedback and Yaissa Siqueira for her contribution in some of the experiments.
This work is partly supported by CAPES and CNPq grants 2057/14-0 (PDSE),
237049/2013-9, 573964/2008-4, (National Institute of Science and Technology
for Software Engineering—INES, www.ines.org.br).

http://www.atelierb.eu/en/
https://www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker
https://www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker
http://junit.org/
http://cutest.sourceforge.net/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://ltp.sourceforge.net/coverage/lcov.php
http://ltp.sourceforge.net/coverage/lcov.php
https://developer.apple.com/xcode/
http://www0.cs.ucl.ac.uk/staff/y.jia/Milu/
http://www0.cs.ucl.ac.uk/staff/y.jia/Milu/
www.ines.org.br

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 16 of 17

Authors’ contributions
ECBdeM developed the BETA approach and tool as his PhD thesis. He also
partially performed some of the case studies presented in this paper. JBdeSN
wrote a master thesis where he performed several case studies to evaluate the
BETA approach and tool. He is responsible for most of the last experiments
performed using BETA. AMM advised both of the previous authors in their
projects, contributing in the development of BETA and its empirical
evaluation. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Informatics and Applied Mathematics – DIMAp, Federal
University of Rio Grande do Norte, Natal RN, Brazil. 2Department of Computer
Science – DCC, Federal University of Rio de Janeiro, Rio de Janeiro RJ, Brazil.

Received: 28 January 2016 Accepted: 10 October 2016

References
1. Legeard B, Peureux F, Utting M (2002) Automated Boundary Testing from

Z and B. In: LarsHenrik E, Lindsay PA (eds). FME 2002: Formal Methods—
Getting IT Right: International Symposium of Formal Methods Europe
Copenhagen, Denmark, July 22–24, 2002 Proceedings. Springer Berlin
Heidelberg, Berlin, Heidelberg. pp 21–40. doi:10.1007/3540456147_2

2. Jaffuel E, Legeard B (2006) LEIRIOS test generator: automated test
generation from B models. In: Proceedings of the 7th International
Conference of B Users. Springer, Berlin. pp 277–280

3. Dadeau F, Julliand J, Tissot R (2008) Leirios test generator: from research
to teaching, through industry. In: Int. Workshop on the B Method: from
Research to Teaching. APCB, Nantes. pp 1–16

4. Masson PA, Potet ML, Julliand J, Tissot R, Debois G, Legeard B, Chetali B,
Bouquet F, Jaffuel E, Van Aertrick L, Andronick J, Haddad A (2010) An
access control model based testing approach for smart card applications:
Results of the POSÉ project. J Inf Assur Secur 5(1):335–351

5. Satpathy M, Leuschel M, Butler M (2005) ProTest: An automatic test
environment for B Specifications. Electronic Notes Theoretical Comput
Sci 111:113–136

6. Stocks P, Carrington D (1993) Test template framework: a
specification-based testing case study. SIGSOFT Softw Eng Notes
18(3):11–18

7. Cristiá M, Monetti P (2009) Implementing and applying the Stocks-
Carrington framework for model-based testing. In: Formal Methods and
Software Engineering. LNCS. Springer, Berlin Vol. 5885. pp 167–185

8. Satpathy M, Butler M, Leuschel M, Ramesh S (2007) Automatic Testing
from Formal Specifications. In: Gurevich Y, Meyer B (eds). Tests and Proofs:
First International Conference, TAP 2007, Zurich, Switzerland, February
12–13, 2007. Revised Papers. Springer Berlin Heidelberg, Berlin,
Heidelberg. pp 95–113. doi:10.1007/9783540737704_6

9. Gupta A, Bhatia R (2010) Testing functional requirements using B model
specifications. SIGSOFT Softw Eng Notes 35(2):1–7.
doi:10.1145/1734103.1734115

10. Singh H, Conrad M, Sadeghipour S (1997) Test case design based on Z
and the classification-tree method. In: Formal Engineering Methods.,
1997. Proceedings., First IEEE International Conference on. IEEE Computer
Society. pp 81–90. doi:10.1109/ICFEM.1997.630406

11. Mendes E, Silveira DS, Lencastre M (2010) TESTIMONIUM: Ummétodo
para geração de casos de teste a partir de regras de negócio expressas
em OCL. In: Proceedings of the 4th Brazilian Workshop on Systematic and
Automated Software Testing (SAST), Natal

12. Burton S, York H (2000) Automated testing from Z Specifications.
Technical report, York. Report: University of York

13. Marinov D, Khurshid S (2001) TestEra: A novel framework for automated
testing of Java programs. In: Proceedings of the 16th IEEE International
Conference on Automated Software Engineering. IEEE Computer Society,
Washington. pp 22–31. http://dl.acm.org/citation.cfm?id=872023.872551

14. Cheon Y, Leavens G (2002) A simple and practical approach to unit
testing: the JML and JUnit way. In: ECOOP 2002 - Object-Oriented
Programming. LNCS. Springer, Berlin Vol. 2374. pp 1789–1901

15. Amla N, Ammann P (1992) Using Z specifications in category partition
testing. In: Computer Assurance, 1992. COMPASS ’92. ’Systems Integrity,
Software Safety and Process Security: Building the System Right.’,
Proceedings of the Seventh Annual Conference on, Gaithersburg.
pp 3–10. doi:10.1109/CMPASS.1992.235766

16. Dick J, Faivre A (1993) Automating the generation and sequencing of test
cases from model-based specifications. In: FME ’93: Industrial-Strength
Formal Methods. LNCS. Springer, Berlin Vol. 670. pp 268–284

17. Hierons RM, et al. (2009) Using formal specifications to support testing.
ACM Comput Surv 41(2):1–76

18. Carrington D, Stocks P (1994) A tale of two paradigms: formal methods
and software testing. In: Z User Workshop. Workshops in Computing.
Springer, Cambridge. pp 51–68

19. Matos ECB, Moreira AM (2012) BETA: A B based testing approach. In:
Formal Methods: Foundations and Applications. LNCS. Springer, Natal
Vol. 7498

20. Matos ECB, Moreira AM (2013) BETA: a tool for test case generation based
on B specifications. In: Proceedings of CBSoft Tools Session 2013, Brasília

21. Abrial JR (2005) The B-book: assigning programs to meanings. Cambridge
University Press, New York

22. Ammann P, Offutt J (2008) Introduction to software testing. Cambridge
University Press, New York

23. Matos ECB, Moreira AM, Souza F, Coelho RdS (2010) Generating test cases
from B specifications: an industrial case study. In: Proceedings of 22nd IFIP
International Conference on Testing Software and Systems, Natal

24. Matos ECB, Moreira AM, Souza Neto JB (2015) An empirical study of test
generation with BETA. In: Proceedings of the 9th Brazilian Workshop on
Systematic and Automated Software Testing (SAST), Belo Horizonte

25. Andrews JH, Briand LC, Labiche Y (2005) Is mutation an appropriate tool
for testing experiments? In: Proceedings of the 27th International
Conference on Software Engineering. ACM, New York. pp 402–411.
doi:10.1145/1062455.1062530

26. Behm P, Benoit P, Faivre A, Meynadier JM (1999) Météor: A successful
application of B in a large project. FM’99 — Formal Methods: World
Congress on Formal Methods in the Development of Computing
Systems. Springer, Berlin

27. Lei Y, Tai KC (1998) InParameterOrder: a test generation strategy for
pairwise testing. In: The 3rd IEEE International Symposium on
HighAssurance Systems Engineering. IEEE Computer Society, Washington.
pp 254–261. http://dl.acm.org/citation.cfm?id=645432.652389

28. Leuschel M, Butler M (2003) ProB: A model checker for B. In: FME 2003:
Formal Methods. LNCS. Springer, Berlin Vol. 2805. pp 855–874

29. Matos ECB (2016) BETA: a B based testing approach. PhD thesis, Federal
University of Rio Grande do Norte, Natal

30. Marinescu R, Seceleanu C, Le Guen H, Pettersson P (2015) Chapter Three
A Research Overview of ToolSupported Modelbased Testing of
Requirementsbased Designs. In: Hurson AR (ed). Advances in Computers.
Elsevier, Amsterdam Vol. 98. pp 89–140. doi:10.1016/bs.adcom.
2015.03.003. http://www.sciencedirect.com/science/article/pii/
S0065245815000297

31. Bernard E, Legeard B, Luck X, Peureux F (2004) Generation of test
sequences from formal specifications: GSM 11-11 standard case study.
Softw Pract Experience 34(10):915–948. doi:10.1002/spe.597

32. Delamaro ME, Maldonado JC, Jino M (2007) Introdução Ao Teste de
Software. Editora Campus – RJ, Rio de Janeiro, Brazil

33. Jia Y, Harman M (2008) MILU: A customizable, runtime-optimized higher
order mutation testing tool for the full C language. In: Practice and
Research Techniques. TAIC PART ’08. Testing: Academic Industrial
Conference. IEEE Computer Society, Windsor. pp 94–98.
doi:10.1109/TAICPART.2008.18

34. Agrawal H, DeMillo RA, Hathaway B, Hsu W, Hsu W, Krauser EW, Martin RJ,
Mathur AP, Spafford E (1989) Design of mutant operators for the C
programming language. Report SERC-TR-41-P, Purdue University, West
Lafayette, Indiana

35. Ierusalimschy R (2013) Programming in Lua. 3rd ed.. Lua. Org, Rio de
Janeiro

36. Moreira AM, Ierusalimschy R (2013) Modeling the Lua API in B. Draft
37. Ierusalimschy R, Figueiredo LH, Celes W (2014) Lua 5.2 reference manual.

http://www.lua.org/manual/5.2/. Accessed 28 Jan 2016
38. Moreira AM, Cleverton H, Déharbe D, de Matos ECB, Souza Neto JB,

de Medeiros V (2015) Verifying code generation tools for the B-method

http://dx.doi.org/10.1007/3540456147_2
http://dx.doi.org/10.1007/9783540737704_6
http://dx.doi.org/10.1145/1734103.1734115
http://dx.doi.org/10.1109/ICFEM.1997.630406
http://dl.acm.org/citation.cfm?id=872023.872551
http://dx.doi.org/10.1109/CMPASS.1992.235766
http://dx.doi.org/10.1145/1062455.1062530
http://dl.acm.org/citation.cfm?id=645432.652389
http://dx.doi.org/10.1016/bs.adcom.2015.03.003
http://dx.doi.org/10.1016/bs.adcom.2015.03.003
http://www.sciencedirect.com/science/article/pii/S0065245815000297
http://www.sciencedirect.com/science/article/pii/S0065245815000297
http://dx.doi.org/10.1002/spe.597
http://dx.doi.org/10.1109/TAICPART.2008.18
http://www.lua.org/manual/5.2/

de Matos et al. Journal of the Brazilian Computer Society (2016) 22:8 Page 17 of 17

using tests: a case study. In: Blanchette JC, Kosmatov N (eds). Tests and
Proofs: 9th International Conference, TAP 2015, Held as Part of STAF 2015,
L’Aquila, Italy, July 22–24, 2015. Proceedings. Springer International
Publishing, Cham. pp 76–91. doi:10.1007/9783319212159_5

39. Déharbe D, Medeiros Jr V (2013) Proposal: translation of B
implementations to LLVM-IR. Brazilian Symposium on Formal Methods

40. Dovier A, Omodeo EG, Pontelli E, Rossi G (1996) {log}: A language for
programming in logic with finite sets. J Log Program 28(1):1–44

41. Cristiá M, Rossi G, Frydman C (2013) {log} as a test case generator for the
test template framework. In: Software Engineering and Formal Methods.
LNCS. Springer, Berlin Vol. 8137. pp 229–243

42. Durelli VHS, Offutt J, Li N, Delamaro ME, Guo J, Shi Z, Ai X (2016) What to
expect of predicates: An empirical analysis of predicates in real world
programs. J Syst Softw 113:324–336

43. Cristiá M, Cuenca J, Frydman C (2014) Coverage criteria for logical
specifications. In: Proceedings of the 8th Brazilian Workshop on
Systematic and Automated Software Testing (SAST), Maceió. pp 11–20

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1007/9783319212159_5

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Contributions

	The B-method and the BETA tool
	The B-method
	BETA

	Related work
	Methods
	General behavior evaluation
	Code coverage
	Mutation score
	Improved experiment
	Randomization experiment

	Case Studies: presentation and results
	Lua API
	Test case generation
	Test case implementation
	Test case execution

	b2llvm and C4B
	Test case generation
	Test case implementation
	Test case execution

	Discussions
	Question 1: General evaluation of BETA—scope and tool support
	Question 2: Input space partitioning in BETA—quantitative and qualitative aspects
	Question 3: Logical coverage in BETA—quantitative and qualitative aspects
	Question 4: Comparing logical coverage and input space partitioning in BETA
	Threats to validity

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Author details
	References

