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Abstract

Background: The maximum subsequence problem finds a contiguous subsequence of the largest sum of a
sequence of n numbers. Solutions to this problem are used in various branches of science, especially in applications of
computational biology. The best sequential solution to the problem has an O(n) running time and uses dynamic
programming. Although effective, this solution returns little information and disregards the existence of more than a
maximum subsequence sum. Particularly in DNA analysis, if we find all maximum subsequence sums, we will also find
all the possible pathogenicity islands, which are stretches with high possibility of causing some diseases.

Methods: We present new Bulk Synchronous Parallel/Coarse-Grained Multicomputer (BSP/CGM) parallel algorithms,
which consider the existence of more than one subsequence of maximum sum, and are able to find solutions to three
problems: the longest maximum subsequence sum, the shortest maximum subsequence sum, and the number of
disjoint subsequences of maximum sum. To the best of our knowledge, there are no parallel BSP/CGM algorithms for
the related problems. Taking advantage of the advent of general purpose graphics processing unit (GPGPU), we
implemented our algorithms on multi-GPU with Compute Unified Device Architecture (CUDA) and, for comparison
purposes, MPI and OpenMP implementations have also been developed.

Results: The algorithms presented good speedups, as confirmed by experimental results. They use p processors and
require O(n/p) parallel time with a constant number of communication rounds for the algorithm of the maximum
subsequence sum and O(log p) communication rounds, with O(n/p) local computation per round, for the algorithms
of the related problems.

Conclusions: We concluded that our algorithms for the maximum subsequence sum and related problems are
unique and effective. We also believe that the BSP/CGMmodel can guide parallel implementations in modern
architectures such as GPGPU/CUDA. As future work, we intend to extend these results to arrays with higher
dimensions and compute all maximal subsequences in a given interval.

Keywords: Parallel algorithms, Multicore, GPGPU, BSP/CGM, Maximum subsequence sum problem

*Correspondence: anderson.correa.lima@gmail.com
A short version of this paper was presented at the ICCS-2015 [8]
†Equal Contribution
1Faculdade de Computação da Universidade Federal de Mato Grosso do Sul,
Cidade Universitária, C.P: 549 Campo Grande, MS, Brasil
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-016-0045-4-x&domain=pdf
http://orcid.org/0000-0003-0945-6998
mailto: anderson.correa.lima@gmail.com
http://creativecommons.org/licenses/by/4.0/


Lima et al. Journal of the Brazilian Computer Society  (2016) 22:7 Page 2 of 13

Background
Given a sequence of n numbers, the task of finding the
contiguous subsequence, with maximum sum over all
subsequences of the given sequence, is called the max-
imum subsequence sum problem [2]. We also refer to
this problem as the 1D maximum subsequence sum prob-
lem. The solution of this problem arises in many areas of
science, such as computational biology, wheremany appli-
cations require the solution of the maximum subsequence
sum problem. Among these, finding regions of DNA that
are rich or poor in nucleotides G and C (CG-content).
The GC-content is especially important in the search
for pathogenicity islands [9]. Another biological applica-
tion is the identification of transmembrane domains in
protein sequences. This is an important application and
represents one of the important tasks to understand the
structure of a protein or the membrane topology [12].
The best sequential algorithm for the maximum sub-

sequence sum problem, has O(n) time complexity [2].
Despite being a simple and fast algorithm, it yields lit-
tle information about the maximum subsequence sum.
The output returns only the value of the maximum subse-
quence sum. The algorithm does not consider the length
(number of elements) and existence of more than one
maximum subsequence sum. The pseudocode is illus-
trated in Algorithm 1.

Algorithm 1 Maximum subsequence sum (MSqS)
(sequential)
Require: Sequence S of integers.
Ensure: The value of the maximum subsequence sum of S.
1: MaxSoFar ← 0.
2: MaxEndingHere ← 0.
3: for i=1 to n do
4: MaxEndingHere ← max(MaxEndingHere+S[i], 0).
5: MaxSoFar ← max(MaxSoFar, MaxEndingHere).
6: end for

Previous works have reported good parallel solutions
for the maximum subsequence sum problem. Qiu and Akl
presented algorithms for the 1D (subsequence) and 2D
(subarray) versions of the problem [11]. Their algorithms
work on interconnection networks (hypercube and star)
of length p, using O(n/p + log p) parallel time with p pro-
cessors in version 1D [11]. Zhaofang Wen presented a
parallel random access machine (PRAM) algorithm using
O(log n) parallel time with O(n/ log n) processors [16].
Perumalla and Deo also presented a PRAM algorithm
with the same time complexity and number of processors
[10]. A Bulk Synchronous Parallel/Coarse-Grained Mul-
ticomputer (BSP/CGM) algorithm for this problem was
presented by Alves et al. using O(n/p) parallel time with
p processors and a constant number of communication
rounds [1].

In this paper, we revisit the maximum subsequence sum
problem and propose solutions to three related problems:
the longest maximum subsequence sum, the shortest
maximum subsequence sum, and the number of disjoint
subsequences of maximum sum.
As far as we know, there are no parallel BSP/CGM

algorithms for these three problems. The basis of our
solution involves several variations of prefix sum in
parallel [7].
The algorithms use p processors and require O(n/p)

parallel time with a constant number of communication
rounds for the algorithm of the maximum subsequence
sum and O(log p) communication rounds, with O(n/p)
local computation per round, for the algorithms of the
related problems.
In order to show the efficiency not only in theory but

also in practice, the algorithms were implemented on
a machine with multiple GPUs using compute unified
device architecture (CUDA). We also implemented the
algorithms with MPI and OpenMP.
This paper is organized as follows. The “Methods”

section defines the basic and related problems, dis-
cusses the extension of a solution already known, and
presents our proposed BSP/CGM algorithms. The imple-
mentations and results are presented in the “Results”
section.
Finally, the “Conclusions” section presents the conclu-

sions and future work.

Methods
The problems
The basic problem of the 1D maximum subsequence sum
may be defined formally as follows. For simplicity we con-
sider the numbers to be integers. Consider a sequence
Xn = (x1, x2, . . . , xn) of n integers. A subsequence is any
contiguous segment (xi, . . . , xj) of Xn, where 1 ≤ i ≤
j ≤ n. The 1D maximum subsequence sum problem is
to determine, among all possible subsequences, the sub-
sequence M = (xi, . . . , xj) that has the maximum sum
(
∑j

k=i xk) [2]. In the sequence represented in Fig. 1, there
are three disjoint subsequences of maximum sum. The
first consists of elements (x1, x2) with size 2; the second is
represented by the element (x4) with size 1; the third con-
sists of the elements (x6, x7, x8, x9) with size 4. All have
sum equal to 15.
In a given sequence of integers, like sequence X illus-

trated in Fig. 1, there might be more than one maximum
subsequence sum. In this context, at least three new prob-
lems arise: the longest maximum subsequence sum, the
shortest maximum subsequence sum, and the number of
disjoint subsequences of maximum sum. In the first two
problems, the size is related to the number of elements
that make up the subsequences.
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Fig. 1 The three subsequences of maximum sum of X with the same sum [8]

Computational model
In this work we use the BSP/CGM parallel computation
model [3, 15]. It consists of a set of p processors, each hav-
ing a local memory of size O(n/p), where n is the problem
size.
The BSP/CGM parallel computing model is a realis-

tic model where special attention is given to minimize
communications overheads. This model is particularly
suitable nowadays in parallel machines where the overall
computation speed is considerably larger than the overall
communication speed.
An algorithm in this model performs supersteps (a

series of rounds), alternating well-defined local compu-
tation and global communication phases, separated by
a synchronization barrier. The cost of communication
considers the number of rounds required. The implemen-
tation of a BSP/CGM algorithm generally presents good
results with performance similar to that predicted in its
theoretical analysis [4]. Since the MPI library is designed
for distributed memory environments, a BSP/CGM algo-
rithm can be mapped into an MPI implementation using
the message resources of this library. On the other hand,
for the implementation of a BSP/CGM algorithm on a
general purpose graphics processing unit (GPGPU) with
CUDA, we need to establish the correspondence of com-
putations and communications concepts in this environ-
ment. In this context, the supersteps of the BSP/CGM
model are represented by sequential invocations of each
CUDA kernel. Furthermore, we associate the set of pro-
cessors of the BSP/CGM model with the set of CUDA
streaming multiprocessors (SMs). Figure 2 illustrates our
suggestion for this process.

The extended solution
In 2004, Alves et al. [1] presented a BSP/CGM algo-
rithm for the maximum subsequence sum problem. This
algorithm is efficient, but like the previous solutions, it
does not consider the existence of more than a subse-
quence of maximum sum. Furthermore, since the algo-
rithm works in a distributed environment, it performs a
series of compressions that change the input sequence.
This change causes difficulty in the search of more than
one subsequence. On the other hand, using the ideas of
the PRAM algorithm proposed by Perumalla and Deo
[10], in this work we devise a new BSP/CGM paral-
lel algorithm for this problem that uses the final output

to compute the shortest/longest maximum subsequences
and the total number of disjoint maximum subsequences.
Figure 3 illustrates an example of the output array of
Perumalla and Deo’s algorithm [10]. Through the output
array, we can find all disjoint subsequences of the max-
imum subsequence sum problem. In this example, there
are three disjoint maximum subsequences with differ-
ent sizes. Next we present new BSP/CGM algorithms to
solve the 1D maximum subsequence sum problem, the
shortest/longest maximum subsequences, and the total
number of maximum subsequences.

The BSP/CGM algorithm for the maximum subsequence
sum
We designed a BSP/CGM solution (see Algorithm 2) that
solves the basic problem of maximum subsequence sum.
In the algorithm, the arrays PSUM and SSUM mean pre-
fix sum and suffix sum, respectively. We compute the
suffix maxima of PSUM and prefix maxima of SSUM and
store the results in the arrays SMAX and PMAX, respec-
tively. The output of Algorithm 2 is an array M shown in
Fig. 3.

Fig. 2 Correspondence between the BSP/CGM and the GPGPUmodel
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Fig. 3 15 is the highest value and represents the maximum sum of Q
[8]

Algorithm 2Maximum subsequence sum
Require: (1) A set of P processors; (2) The number i of each
processor pi ∈ P, where 1 ≤ i ≤ P; (3) Sequence Q of n
integers.

Ensure: (1) Array M[1. . . n] of integers with all disjoint subse-
quences of maximum sum; (2) maxsum Maximum Subse-
quence Sum.

1: PSUM ← Prefix_Sum(P,Q) in parallel
2: SSUM ← Suffix_Sum(P,Q) in parallel {Prefix sum opera-
tion applied on the inverse array Q}

3: SMAX ← Maximum_Suffix_Propagation(P,PSUM) in
parallel {Propagation of maximum values from end to the
beginning}

4: PMAX ← Maximum_Prefix_Propagation(P, SSUM) in
parallel {Propagation of maximum values from beginning to
the end.}

5: Processor p1 sends n/p elements of each array Q, PSUM,
SSUM, SMAX and PMAX to each processor pi ∈ P.

6: Each processor pi in parallel obtains the local arrays:
LocalMS ← PMAX(n/p) − SSUM(n/p) + Q(n/p)
LocalMP ← SMAX(n/p) − PSUM(n/p) + Q(n/p)
LocalM ← LocalMS(n/p) + LocalMP(n/p) − Q(n/p)

7: Each processor pi sends array LocalM in parallel to proces-
sor p1, which computes arrayM:

M =[LocalMp11 , . . . ,LocalMp1n/p
, . . . ,LocalMpp1 , . . . ,

LocalMppn/p
]

8: maxsum ← Maximum_Reduction(P,M) in parallel

Two operations are performed in the algorithms
“Maximum_Suffix_Propagation and Maximum_Prefix_
Propagation” (they are called from Algorithm 2), both
consisting of a maximum propagation. The first opera-
tion occurs in the local array of each processor. In this
case, higher values are propagated, replacing the smaller
values. The replacement is performed until a (new)
higher value is found, which then starts a new maximum
propagation, as illustrated in Fig. 4. The second operation
occurs between each processor and the greater value of
the maximum values of the subsequent/precedent pro-
cessors, as illustrated in Fig. 5. For the sake of simplicity,

we present only the “Maximum_Suffix_Propagation”
(Algorithm 3). The main difference of the algorithms is
the direction of propagation. For the complete explana-
tion about the variables (PSUM, SSUM, PMAX, SMAX,
LocalMP, LocalMS, and LocalM), please see [10].

Algorithm 3Maximum_suffix_propagation
Require: (1) Array PSUM[ 1 . . . n] of integers.
Ensure: (1) Array SMAX[ 1 . . . n] of integers.
1: Processor p1 sends n/p elements of PSUM to each processor
pi ∈ P.

2: In each processor pi, an operation of maximum propagation
is performed inPSUM(n/p). The operation is initiated in the
element of index (n/p) × (i) and runs until the element of
index (n/p)× (i− 1). At the end, the maximum element is in
the first position.

3: Finally, an operation of maximum propagation is performed
between each processor pi and the maximum element
among all the maximum elements of the processors pk ,
where k > i.

Correctness and complexity
Besides the fact that we use only p processors, the steps of
our main BSP/CGM algorithm can be easily derived from
the PRAM algorithm [10]. Using BSP/CGMparallel prefix
algorithms, steps 1 and 2 can be computed using p proces-
sors in O(n/p) time and O(log p) communication rounds.
For steps 3 and 4, we use Algorithm 3, requiring p pro-
cessors with O(n/p) time and O(log p) communication
rounds. Steps 5 to 7 can be computed using p processors
with O(n/p) time and a constant number of communica-
tion rounds. Finally, using BSP/CGM parallel maximum
reduction algorithm, step 8 is computed using p pro-
cessors with O(n/p) time and O(log p) communication
rounds. Therefore, Algorithm 2 computes the maximum
subsequence sum correctly using p processors in O(n/p)
time with O(log p) communication rounds.

The BSP/CGM algorithms for the related problems
We also developed BSP/CGM algorithms to solve three
problems related to the maximum subsequence sum, that
is, (1) the longest maximum subsequence sum, (2) the
shortest maximum subsequence sum, and (3) the number
of disjoint subsequences of maximum sum. The output of
Algorithm 2 is the starting point of these three algorithms.
For simplicity, the strategies of these algorithms are listed
in only one algorithm, represented here by Algorithm 4.
First, using the array TransArray, we mark all the ele-

ments of arrayM that are equal tomaxsum.
Then, we compute the array SegScan that stores the

regions where the elements ofM have the same value. We
call this operation Segmented_Scan. We define this oper-
ation as follows: if M[ i − 1]= M[ i] then SegScan[ i]←
SegScan[ i−1]+1; otherwise, SegScan[ i]← 1.We define
SegScan[ 0]← 1.
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B

Fig. 4 Local operations

Since we are searching the regions in M where we have
maximum values, we perform a bitwise operation with the
SegScan and TransArray arrays. This operation changes
the SegScan array and all the elements in this array that
do not correspond to the elements inM that represent the
maximum subsequences become equals 0. The subarrays
in SegScan that are not null are enumerated and represent
the maximum sum subsequences.
The maximum subsequences and their respective sizes

are easily found using parallel BSP/CGM prefix/suffix
sum, reduction, and other basic algorithms.

Correctness and complexity
In order to find the maximum subsequences in M, we
use basic BSP/CGM algorithms for prefix/suffix sum,
Segmented Scan and Bitwise And Operation. Efficient
BSP/CGM parallel algorithms for these problems can be
found in Dehne at al. [4]. Figure 6 illustrates the relation-
ship among the internal routines listed by Algorithm 4 and

the solutions that can be drawn from them. The starting
point is the output of Algorithm 2. Algorithm 4 computes
correctly and returns the three expected values.
Using BSP/CGM reduction algorithms, the internal rou-

tines of Algorithm 4 associated with the sizes of maximum
subsequence sum can be computed using p processors in
O(n/p) time and O(log p) communication rounds. Hence,
the combination of Algorithms 2 and 4 yields the solution
in O(n/p) time with O(log p) communication rounds.

Results
The main advantage of using the BSP/CGM model to
design parallel algorithms is that when implemented in
real environments, they have an expected behavior as
stated by their theoretical analysis. In this work, we imple-
mented our algorithm using both distributed and shared
memory environments. The results showed that the exe-
cution times were compatible with those foreseen by the
theoretical analysis.

A

B
Fig. 5 Global operations
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Fig. 6 Problems that can be solved from the output arrayM

Algorithm 4 Related problems
Require: (1) Array M[ 1 . . . n] of integers (Output from Algo-

rithm 2) ; (2) The value of maximum sum (maxsum)
(Output from Algorithm 2).

Ensure: (1) The longest = size of the longest maximum sub-
sequence sum ; (2) The shortest = size of the shortest
maximum subsequence sum ; (3) The count = number of
disjoints subsequences of maximum sum.

1: Use the set of processors P to obtain the transformed array
TransArray[ 1 . . . n], as follows:

2: for ∀ 1 ≤ i ≤ n in parallel do
3: if (M[ i]= maxsum) then
4: TransArray[ i]← −1 {All bits are set to 1 (two’s

complement representation)}
5: else
6: TransArray[ i]← 0 {All bits are set to 0}
7: end if
8: end for
9: SegScan[ 1 . . . n]← Segmented_Scan(M[ 1 . . . n] ) in par-

allel
10: SegScan[ 1 . . . n]← SegScan[ 1 . . . n] &TransArray[ 1 . . . n]

in parallel {Bitwise And Operation}
11: count ← 0
12: shortest ← MAX_VALUE
13: longest ← MIN_VALUE
14: for ∀(SegScan[ i] �= 0 and SegScan[ i+1]= 0) in parallel

do
15: count ← count + 1 {Apply a Parallel Sum Reduction

Algorithm}
16: shortest ← min(shortest, SegScan[ i] ) {Apply a Par-

allel Minimum Reduction Algorithm}
17: longest ← max(longest, SegScan[ i] ) {Apply a Paral-

lel Maximum Reduction Algorithm.}
18: end for

We used a 32-node cluster of workstations and the mes-
sage passing interface (MPI) to implement our algorithms
in a distributed memory environment. The shared mem-
ory environment was tested with several configurations.
The open multi-processing (OpenMP) implementation
used workstations with 2/4/6 cores. The GPGPU/CUDA
version of the algorithm was implemented using one GPU
and four GPUs. Previous works have shown the good per-
formance of BSP/CGM algorithms when implemented on
clusters of workstations [1]. In this work, we use four
different computing systems with shared memory, which
allow us to confront our shared memory implementations
against a similar distributed memory implementation. For
comparison purpose, the speedups were computed using
as reference the time spent by the sequential implementa-
tion in a host of the computing system were the respective
parallel algorithms where executed. All the implementa-
tions showed competitive speedups.

Computational resources
We have run the experiments on five different computing
systems (Table 1), with shared and distributed memory.
Four of those computing systems (CS-1, CS-2, CS-3, and
CS-5) use shared memory and have at least one CUDA
GPU (one of them has four identical GPUs) with differ-
ent specifications, which allow us to check the consistency

Table 1 Platforms—general specs

ID Processor Clock Cores/threads RAM/cache Linux/dist./GCC

CS-1 Xeon E5-2620 2.00 6/12 16/15 CentOS 7.2/3.10.0 / 4.8.5

CS-2 Core i7-3770 3.40 4/8 8/8 Ubuntu 12.04/3.2.0-37/4.6.3

CS-3 Core2 Quad Q9550 2.83 4/4 4/6 Ubuntu 15.04/3.19.0-15/4.9.2

CS-4 Xeon E5620 2.40 4/8 8/12 CentOS 6.8/2.6.32/4.4.7

CS-5 Core i7-4500U 1.80 2/4 8/4 Ubuntu 15.04/3.19.0/4.9.2
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Table 2 Platforms—CUDA specs

ID GPU (NVidia) # GPUs RAM # SMs Cuda cores Clock GPU arch/SDK

CS-1 GTX TITAN Black 4 6 15 2880 889 3.5/7.5

CS-2 GTX 680 1 2 8 1536 1006 3.0/4.2

CS-3 GTX 460 v2 1 1 7 336 778 2.1/7.5

CS-5 GT 720M 1 2 2 192 797 2.1/7.5

and performance of our algorithms using shared memory
environment. One of the computing systems (CS-4) is a
cluster of 32 nodes connected with aMyrinet switch using
10 Gb/s Ethernet.
The technical specifications of the computing systems

are depicted in Tables 1, 2, and 3. All the processors use
64–bit architecture. The clock frequency is given in GHz,
the cache memory in MB, and the RAMmemory in GB.

Execution methodology
We used randomly generated data for input arrays vary-
ing from 220 to 229 elements. For each input, we ran the
experiment 20 times and measured the average running
time. To make sure that such an average is representative
of the expected value, we apply the Shapiro-Wilk [14] sta-
tistical test to the 20 times obtained, and we tolerate the
discarding of five values, thereby resulting in a minimum
of 15 and a maximum of 20 valid values to compute the
average. The result of the statistical test (P value) has to be
greater than α > 0.05, so that we can assert with signifi-
cance level of 5 % that the sample derives from a normal
population. In case the statistical test gives α ≤ 0.05, the
sample is discarded and new running times are collected
for that input.
The algorithms were tested in the distributed memory

environment CS-4 usingMPI. In this environment, we can
specify the number of nodes and their respective proces-
sors to be allocated for the execution, in the form of NX :
PY (X nodes, with Y processors each).The configuration
N32 : P8 means that we used 32 nodes of the cluster,
each with 8 threads, with a total of 256 MPI processes.
We executed our algorithm with the following configura-
tions: N16 : P1, N16 : P2, N16 : P4, N16 : P8, N32 : P1,
N32 : P2, N32 : P4, and N32 : P8.
In the shared memory environment, we used OpenMP

and CUDA. The CUDA implementation of the algorithms
were executed on CS-1, CS-2, CS-3, and CS-5 platforms.
In the CS-1 platform, we also varied the number of GPUs,
where we used 1, 2, and 4 GPU configurations. The
OpenMP implementation was executed in all platforms.

Table 3 Platforms—MPI specs

ID Cluster # Nodes/threads # MPI proc. mpicc Comm.

CS-4 Cluster Rocks
6.0 (Mamba)

46/8 368 4.4.7 Myrinet
10 Gb/s

We tested the OpenMP implementation with different
numbers of threads. In all platforms, we used 1, 2, and 4
threads, while we also tested with 8 threads in the CS-1,
CS-2, and CS-4 and with 12 threads in the CS-1.
A sequential version of the algorithm, with the related

problems, was implemented using C. This implementa-
tion was executed in all platforms. The speedups of the
parallel versions were computed using the execution time
of the sequential implementation of the algorithms in the
respective platform as reference.
Due to the exponential variation of the input values

(with 220 ≤ n ≤ 229), all the curves use the logarithmic
scale (base 2) as the horizontal axis. Vertical axis (runtime
and speedup) uses logarithmic scale (base 10) for better
presentation and visualization.

Results
Now we present the results that were obtained using the
five computing systems. First we present the execution
times of the sequential version of the algorithms. As we
stated above, we implemented it on all platforms in order
to compute the respective speedup in each computer
system.

Sequential implementation
We developed a sequential version of the Perumalla and
Deo parallel algorithm [10], and we extended the sequen-
tial version for solving the related problems. The complete
algorithm has O(n) time complexity. It was implemented
on all platforms.

Fig. 7 Running times (milliseconds) of sequential implementation
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Table 4 Running times (milliseconds) of sequential implementation

n CS-5 CS-4 CS-1 CS-3 CS-2

220 35.811 71.143 57.314 59.100 31.517

221 69.225 141.295 110.836 114.250 62.986

222 135.859 283.747 219.730 225.275 126.487

223 284.376 636.522 531.464 502.136 250.795

224 543.696 1305.605 1063.938 1005.549 501.978

225 1225.326 2492.813 2114.072 2005.769 1004.222

226 2186.893 6825.944 4105.771 4012.655 2022.964

227 4985.319 – 8272.913 16,682.755 4030.542

228 – – 18,931.466 – 20,327.877

229 – – 42,466.062 – –

Figure 7 and Table 4 show the behavior of the algorithm
on each platform. We observe that when the input size
reaches the resource limits of the platform, the execution
results stop obeying the expected curve of the execution
times. This phenomenon is called Thrashing [5]. It occurs
because of the constant paging, which degrades the com-
plete system performance. In some cases, it freezes the
system. In some tests, the operating system killed the pro-
cess and we could not collect the result. In these cases,
if the time was collected, it would be equivalent or worse
than that when the thrashing phenomenon occurs.

MPI implementation
We developed a version of the BSP/CGM algorithms for
distributed memory. This version was implemented with
MPI and uses the resources of MPI which includes a
number of library functions for communication and syn-
chronization among all members of a process group.
The sequence is divided in p subsequences si, 1 ≤ i ≤ p

of size n/p. Each processor pi(1 ≤ i ≤ p) receives the sub-
sequence si and compute the algorithm locally. The partial
solutions (boundaries) are exchanged using built-in func-
tions of the MPI. The details of the code can be seen in
https://github.com/rodrigogbranco/extendedmss.

Fig. 8 CS-4 running times (milliseconds) of MPI implementation

Figure 8 and Table 5 show the average execution times.
We executed the MPI implementation using 16 and 32
nodes with different numbers of threads.
We can see that when the input is not big enough, there

is a communication overhead. This depends on the num-
ber of used nodes and impacts the execution times. After
a given size of the input, the execution times present
a linear behavior (in each processor the time complex-
ity is O(n/p)). When the size of the input is too big,
the thrashing phenomenon occurs again. In some cases,
such as N16 : P1, the operating system/cluster manage-
ment aborted the application with input sizes of n = 228
and n = 229.

OpenMP implementations
Using the ideas of the distributed memory BSP/CGM
algorithms that were implemented with MPI, we imple-
mented them in a shared memory environment using
OpenMP (Table 6 and Fig. 9). The main difference was
that the message exchange among the processes (threads)
was done in the memory of the workstations. We used the
OpenMP directives to create and eliminate threads and
shared arrays and schedule functions. When supported
by the compilers, we used directives for array reduction.
The details of the code can be seen in https://github.com/
rodrigogbranco/extendedmss.
The shared memory implementation of the BSP/CGM

algorithms with OpenMP shows a linear curve on all
platforms. This confirms the theoretical complexity of
the BSP/CGM algorithms, which have O(n/p) time com-
plexity in each computation round. The phenomenon
of thrashing and the finalization of the execution for
the operating system was also observed for some large
inputs. Besides the good speedups that we obtained for
the BSP/CGM algorithms with OpenMP, the execution
times of the cluster platform (CS-4) were smaller. This
leads us to explore another shared memory environment,
the GPGPU with CUDA.

https://github.com/rodrigogbranco/extendedmss
https://github.com/rodrigogbranco/extendedmss
https://github.com/rodrigogbranco/extendedmss
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Table 5 CS-4 running times (milliseconds) of MPI implementation

n N16:P1 N16:P2 N16:P4 N16:P8 N32:P1 N32:P2 N32:P4 N32:P8

220 10.730 11.403 9.788 91.368 11.597 19.765 21.263 119.741

221 21.403 15.286 12.880 83.876 16.562 21.004 18.488 79.335

222 99.957 23.938 18.761 16.064 24.395 25.461 21.225 23.279

223 82.786 40.277 29.675 21.406 45.941 33.450 26.846 28.399

224 175.851 75.340 51.073 33.305 82.706 52.493 38.760 33.242

225 357.882 139.970 90.844 53.800 146.140 93.536 59.839 46.379

226 748.831 263.430 161.765 100.714 263.629 164.268 93.531 66.719

227 1546.020 559.685 307.145 171.782 555.407 288.917 170.073 111.906

228 – 1331.303 2356.562 314.681 854.059 426.578 317.116 203.811

229 – – – 24,301.072 – 4174.692 – 17,766.883

Multi-GPU implementation
One of the goals of this work is to show that the BSP/CGM
model is suitable for designing parallel algorithms for dis-
tributed and shared memory alike. Besides that, we also
want to show that the BSP/CGM algorithms can be imple-
mented in GPGPUs with good speedups. In order to verify
the efficiency of the algorithm in the GPGPUs environ-
ment, we tested it with four different configurations. One
of the configurations is a multi-GPGPU with four devices
(GPUs).
Differently from the MPI and OpenMP environments,

the implementation of a BSP/CGM algorithm using
CUDA/GPGPU has a higher level of complexity. For this
reason, in this section, we choose to present a step by step
description of the parallel implementation of the 1D max-
imum subsequence sum and the related problems using
CUDA/GPGPU. The details of the code can be seen in
https://github.com/rodrigogbranco/extendedmss.
Figure 2 shows how we can map a BSP/CGM algorithm

onto a GPGPU. The computation rounds are done by the
SMs. The computation is executed by sets of blocks of
threads. Each thread runs a copy of the same program in
the GPGPU (kernel function).

We implemented our algorithm in the GPGPU using
CUDA. With CUDA, a kernel function specifies the code
to be executed by all threads in a parallel step (compu-
tation round). When a kernel is called, or launched, it is
executed as a grid of thread blocks in parallel. Each thread
block is scheduled separately for a SM. Threads within
the same block are organized in units of 32 threads, called
warps [13]. To maximize even further the performance,
CUDA uses different memory types. Eachmemory is used
for different purposes. The shared memory, for example,
is used to exchange data between threads within a CUDA
block [13]. When a kernel finishes its computation, we
have a synchronization. After that, we have a new round
or the program finishes.
First we describe the steps of our implementation that

uses only one GPGPU.
As shown in Table 7, we used the Thrust Library

[6] extensively, including the device vector (using
thrust::device_vector) and host vector (using thrust::host_
vector) when implementing Algorithms 2 and 4 with
CUDA. These types of vectors were chosen to simplify
the use of optimized Thrust functions, and also the
memory transfers between device-host and vice-versa.

Table 6 Running times (milliseconds) of OpenMP implementation

n CS-5 4T CS-4 8T CS-1 12T CS-3 4T CS-2 8T

220 23.917 28.162 13.353 27.371 9.412

221 45.392 50.601 26.081 53.049 17.390

222 91.215 100.928 46.429 107.229 34.647

223 175.983 210.809 84.330 215.435 69.902

224 332.776 471.320 157.892 457.911 137.247

225 684.553 860.291 297.038 911.215 274.483

226 1406.760 1620.361 614.651 1816.237 539.597

227 3018.799 – 1355.126 5835.837 1103.898

228 5855.649 – 2362.273 – 2188.595

229 – – 7082.654 – 5,169,643.376

https://github.com/rodrigogbranco/extendedmss
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Fig. 9 Running times (milliseconds) of OpenMP implementation

Now we detail the CUDA implementation steps of Algo-
rithms 2 and 4.
Steps 1 and 2 (Sum of Prefixes and Sum of Suf-

fixes): In order to solve steps 1 and 2, we used
thrust::inclusive_scan. We used the reverse iterator of
thrust::device_vector to iterate and compute sum of suf-
fixes transparently.
Steps 3 and 4 (Maximum Suffix Propagation

and Maximum Prefix Propagation): These steps
follow the same idea of steps 1 and 2 but using
thrust::maximum rather than the default thrust::plus used
on thrust::inclusive_scan.
Steps 5–9: To build the output arrayM, some arithmetic

operations involving the initial four arrays were needed.
For that, we used the function thrust::transform to operate
individually on each element of array.

Table 7 Thrust and CUDA functions used by Algorithms 2 and 4

Algorithm Steps Thrust function

Algorithm 2 (1) PSUM (2) SSUM thrust::inclusive_scan

Algorithm 2 (1) PSUM (2) SSUM thrust::for_each (to correct
borders - multi-GPUs)

Algorithm 2 (3) SMAX (4) PMAX thrust::inclusive_scan

Algorithm 2 (3) SMAX (4) PMAX thrust::for_each (to correct
borders - multi-GPUs )

Algorithm 2 (7) Compute array M thrust::transform

Algorithm 2 (8) Maximum reduction thrust::reduce

Algorithm 4 (2) Transformation thrust::for_each

Algorithm 4 (7) Segmented scan thrust::inclusive_scan_by_key

Algorithm 4 (8) Bitwise and operation thrust::transform, thrust::find

Algorithm 4 (8) Bitwise and operation thrust::for_each (to correct
borders - multi-GPUs)

Algorithm 4 (12) Find related solutions findRelatedSolutions
(Custom Kernel)

– Synchronization __syncthreads (threads)

– Synchronization cudaDeviceSynchronize
(blocks and device-host)

Step 10: To solve this step, we used thrust::reduce using
thrust::maximum.
At the beginning of Algorithm 4, we built the TransAr-

ray using thrust::for_each, with a custom function oper-
ation to manipulate the individual elements. So, in that
function we passed the maxsum and, if the element
was equal to it, then it would receive –1 value and
0 otherwise. We built a new array using TransArray,
applying the Segmented_Scan offered by Thrust through
thrust::inclusive_scan_by_key (see Fig. 6).
With both TransArray and SegScan ready, we applied

the bitwise and operation (&) using thrust::transform and
thrust::bit_and. Finally, we built a CUDA kernel to pro-
cess the last part of Algorithm 4 (quantity of maximum
subsequence sum, longest subsequence, and shortest sub-
sequence).
Our CUDA implementation with more than one GPU

works on the same host. Therefore, in order to man-
age each GPU transparently, we used OpenMP, and each
thread was responsible for managing its own GPU. It
is important to note that here OpenMP is being used
only to manage the GPUs and run the synchroniza-
tion among them through the function cudaDeviceSyn-
chronize() (GPU-host synchronization), followed by the
directive #pragma omp barrier (synchronization among
threads).
When the algorithm was implemented in a multi-GPU

system, we had to take care of some details. After the end
of some steps of a GPU we need to do some extra work,
since each GPU works with a n/(#gpus) partition of the
array M[ 1 . . . n]. The same occurs for the arrays PSUM
and SSUM. After the GPU finalizes each of steps 1 and 2
of Algorithm 2, they need to correct their array borders.
Those corrections can be done by using the shared mem-
ory of the host with the function thrust::for_each. At the
end of steps 3 and 4, the first element of arrays PMAX
and SMAX may need to be corrected too. This also is
done with the function thrust::for_each. Algorithm 4 uses
the function thrust::for_each after step 8 to correct the

Fig. 10 Running times (milliseconds) of CUDA implementation
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Table 8 Running times (milliseconds) of CUDA implementation

n CS-1 4GPUs CS-1 2GPUs CS-1 1GPU CS-3 CS-5 CS-2

220 9.033 10.338 4.040 4.701 19.220 2.650

221 15.794 12.300 5.194 7.839 36.470 4.310

222 15.661 14.138 7.456 14.254 71.342 7.662

223 15.053 16.320 11.999 27.1798 139.110 14.505

224 16.036 17.480 20.913 53.415 304.978 28.348

225 23.632 31.100 39.653 – 573.287 56.360

226 30.764 56.451 76.051 – – –

227 55.126 92.363 149.896 – – –

228 103.174 178.439 – – – –

229 204.072 – – – – –

borders too. In the last step, each GPU sends its three
values (quantity of maximum subsequence sum, longest
subsequence, and shortest subsequence) to the host that
will compute the final solution.
Now we describe some strategies that we used in the

implementation. To make a better use of the GPU, two
techniques were utilized: persistent threads and efficient
communication among SPs. A kernel was launched with
the number of blocks of threads as a multiple of the
amount of blocks executed concurrently in each SM. Since
a SM can process one or more blocks of threads simulta-
neously, we avoid blocks of threads staying in the schedul-
ing queue. As a consequence, each block of threads stay
persistent and can operate on more than one part of the
input, when this input is larger than the grid of blocks
of the kernel. The multiplicity of the amount of blocks
of threads selected was two times the number of SMs.
This choice was based on the experiments using the pro-
file nvprof, that obtained the best result, achieving 95 % of
occupancy.
The use of efficient communication among the SPs is

related to the SIMD functionality offered by the latest ver-
sions of GPUs. This functionality allows that SPs within
an SM communicate through the shared memory and

Fig. 11 Best running time (milliseconds) of each implementation

without synchronization, simply using registers. A sec-
ond implementation was created for older versions of
GPUs (capability <3.0) by using communication through
the shared memory and synchronizations.
We also exploited the memory hierarchy of the GPU by

moving data from global memory to shared memory (and
registers) so as to promote coalesced access and avoid the
high costs associated with global memory. The thread’s
resource utilization was kept low, thus permitting more
threads to be used per block and a full occupation the
GPU SMs.
Finally, the optimized thrust::reduce was used to per-

form the reductions between blocks, finding the results
for a single GPU. Each GPU sent its results to host for final
reductions. It was possible to take advantage of memory
coalescing and thereby achieve good performance results.
The running times of the CUDA GPU implementations

are presented in Fig. 10 and Table 8. As in the MPI imple-
mentation, it is possible to observe some overhead for the
first inputs whenmore than one GPU is used in the execu-
tion. However, starting from the input size n = 224, we can
note that this overhead decreases significantly. A curiosity
relative to the other implementations is the fact that the

Table 9 Best running time (milliseconds) of each implementation

n CS-1 OMP 12T CS-4 N32:P8 CS-1 CUDA 4GPUs

220 13.353 119.741 9.033

221 26.081 79.335 15.794

222 46.429 23.279 15.661

223 84.330 28.399 15.053

224 157.892 33.242 16.036

225 297.038 46.379 23.632

226 614.651 66.719 30.764

227 1355.126 111.906 55.126

228 2362.273 203.811 103.174

229 7082.654 17,766.883 204.072
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Fig. 12 Speedups—parallel/sequential in the same platform

thrashing phenomenon does not occur here. The expla-
nation for this is that the memory of the GPUs is stressed
in this situation and, on reaching the limit of its capacity,
the GPU driver informs the impossibility to continue and
the execution is aborted. Therefore, the main memory, in
those positions used by the application, is not paged and,
for this reason, the thrashing phenomenon is not verified.

Best running times of each implementation and speedups
Figure 11 and Table 9 present the best running times
for each of the implementations (OpenMP, MPI, and
CUDA). Since the configurations of the Platform CS-1
is a 4-GPUs system, we can already expect that the best
running times of the implementations occur in this envi-
ronment. The results show the scalability of the algorithm
and the implementations presented: the addition of more
threads/nodes/GPUs tends to present superior results.
In order to show the speedups, we computed them with

respect to each platform. Figure 12 and Tables 10 and
11 present the speedups relative to the sequential and
parallel implementation executed in the same platform.
We can see that the OpenMP implementations, in gen-
eral, tend to preserve the speedup with little variation, as
well as the CUDA implementations with GPUs cards of

lower performance. The exceptions are implementations
CS-1 CUDA 4GPUs and CS-4 N32:P8, for which we
can observe speedups of approximately 102 times for the
MPI implementation and approximately 208 times for the
multi-GPU CUDA version.
The platforms and equipments available were not suf-

ficient to discover how many MPI processes (nodes and
processes per node) would be sufficient to reach the
speedup of the Multi-GPU implementation, due to the
limitations in the submission of jobs to the cluster.
All source codes of the implementations can be found at

https://github.com/rodrigogbranco/extendedmss.

Conclusions
There are good sequential and parallel solutions to the
problem of maximum subsequence in the literature. How-
ever, they consider only one subsequence of maximum
sum for each input sequence. Therefore, to circumvent
this shortcoming, we developed BSP/CGM parallel algo-
rithms that consider the simultaneous existence of more
than one maximum subsequence sum.
Furthermore, our algorithms can find solutions for three

new related problems: the maximum longest subsequence
sum, the maximum shortest subsequence sum, and the
number of disjoints subsequences of maximum sum. To
the best of our knowledge, there are no parallel algorithms
for these related problems. The algorithms work for
shared and distributed memory and were implemented
using a multi-GPU/CUDA, OpenMP, and MPI.
In the design of our algorithms, we use the BSP/CGM

model of parallel computing. It is well known that this
model is suitable for designing parallel algorithms for
distributed memory platforms. In this work, we showed
good results when mapping our BSP/CGM algorithms
to shared memory platforms. The implementations of
the proposed algorithms were shown to be efficient and
have good speedup results, as confirmed by experimen-
tal results. The running times of the MPI and CUDA

Table 10 CS-4 running times (milliseconds) of MPI implementation

n CS-5 OMP 4T CS-5 CUDA CS-4 OMP 4T CS-4 N32:P8 CS-3 OMP 4T CS-3 CUDA

220 1.497 1.863 2.526 0.594 2.159 12.570

221 1.525 1.898 2.792 1.780 2.153 14.572

222 1.489 1.904 2.811 12.188 2.100 15.803

223 1.615 2.044 2.811 22.413 2.330 18.474

224 1.633 1.78 3.019 39.274 2.195 18.824

225 1.789 2.137 2.770 53.748 2.201 –

226 1.554 – 2.897 102.308 2.209 –

227 1.651 – 4.212 – 2.858 –

228 – – – – – –

229 – – – – – –

https://github.com/rodrigogbranco/extendedmss
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Table 11 Speedups—parallel/sequential in the same platform - II

n CS-2 OMP 8T CS-2 CUDA CS-1 OMP 12T CS-1 CUDA
4GPUs

220 3.348 11.893 4.292 6.344

221 3.621 14.610 4.249 7.017

222 3.650 16.508 4.7322 14.030

223 3.587 17.289 6.302 35.305

224 3.657 17.707 6.738 66.345

225 3.658 17.817 7.117 89.454

226 3.749 – 6.679 133.460

227 3.651 – 6.104 150.070

228 9.288 – 8.014 183.489

229 – – 5.995 208.092

implementations are several times better than the sequen-
tial solution in the respective platform. Furthermore, the
CUDA implementation can easily be implemented with
one or several GPUs.
The proposed algorithms use p processors and require

O(n/p) parallel time with a constant number of commu-
nication rounds for the algorithm of the maximum sub-
sequence sum and O(log p) communication rounds, with
O(n/p) local computation per round, for the algorithms of
the related problems.
The results obtained lead us to believe that the pro-

posed algorithms are scalable, since the addition of pro-
cessing elements in the platforms has not yet reached
the saturation point. This means that the addition of
threads/nodes/processors/GPUs in the respective plat-
forms can increase the speedup significantly. Unfortu-
nately, the available platforms do not allow us to reach the
saturation point, since problems related to the limitation
of the available resources have appeared, such as Thrash-
ing and the elimination of the process by the operating
system.
The results also showed the efficiency of the multi-

GPU version, even for large sizes of the input data. Our
implementation supported up to 229 elements with good
running times, that is, supported more than 500 million
elements as the input of the problem.
As future work, we intend to extend the multi-GPU

implementation to solve the maximum sum subarray
problem, with more than one dimension (2D and 3D
problems). We also intend to compute all the maximal
subsequences in a given interval.
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