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Abstract

analysis of PEA performance.

Background: Parallel computing is a powerful way to reduce computation time and to improve the quality of
solutions of evolutionary algorithms (EAs). At first, parallel EAs (PEAs) ran on very expensive and not easily available
parallel machines. As multicore processors become ubiquitous, the improved performance available to parallel
programs is a great motivation to computationally demanding EAs to turn into parallel programs and exploit the
power of multicores. The parallel implementation brings more factors to influence performance and consequently
adds more complexity on PEA evaluations. Statistics can help in this task and can guarantee the significance and
correct conclusions with minimum tests, provided that the correct design of experiments is applied.

Methods: We show how to guarantee the correct estimation of speedups and how to apply a factorial design on the

Results: The performance and the factor effects were not the same for the two benchmark functions studied in this
work. The Rastrigin function presented a higher coefficient of variation than the Rosenbrock function, and the factor
and interaction effects on the speedup of the parallel genetic algorithm | (PGA-I) were different in both.

Conclusions: As a case study, we evaluate the influence of migration related to parameters on the performance of
the parallel evolutionary algorithm solving two benchmark problems executed on a multicore processor. We made a
particular effort in carefully applying the statistical concepts in the development of our analysis.

Keywords: Parallel evolutionary algorithms; Design of experiments; Factorial design

Background
Evolutionary algorithms (EA) are highly effective solvers
of optimization problems for which no efficient methods
are known [1]. Very often, EAs require computational
power, and there have been efforts to improve their
performance through parallel implementation [2,3]. In
fact, for parallel EAs (PEAs), it is possible to achieve
superlinear speedups [4].

Parallel computers have been synonymous with super-
computers: large and expensive machines that are
restricted to few research centers. Since the micropro-
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cessor industry turned to multicore processors, multi-
core architectures have quickly spread to all computing
domains, from embedded systems to personal computers,
making parallel computing affordable to all [5]. This is a
good incentive to convert EAs into PEAs. However, the
complexity of PEA evaluations is a drawback. This com-
plexity basically comes from the inherent complexity of
parallelism and the additional parameters of a PEA.

Evaluations of parallel algorithms adopt a widely used
performance measure called speedup. Speedup corre-
sponds to the ratio of two independent random variables
with positive means, and it does not, in general, have a
well-defined mean [6,7]. As PEAs are randomized algo-
rithms, measures are usually averages. In this work, we
show how to guarantee the correct estimation of the
average speedups.
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PEA performances vary due to many factors, where fac-
tor is an independent variable - a manipulated variable in
an experiment whose presence or degree determines the
change in the output. These factors can be classified as EA
factors, migration factors, computer platform factors, and
factors related to the problem to be solved.

If one is interested in finding out how some of these fac-
tors can influence the PEA performance, it is necessary to
make purposeful changes in these factors so that we may
observe and identify the reasons for changes in their per-
formances. A common method to evaluate performances
is known as ‘one-factor-at-a-time’. This method evalu-
ates the influence of each factor by varying one factor
at a time, keeping all other factors constant. It cannot
capture the interaction between factors. Other common
method is the exhaustive test of all factors and all com-
binations at all levels. This is a complete experiment but
very expensive approach. Those two methods are used
when the number of factors and the number of levels are
small.

A factorial design is a strategy in which factors are
simultaneously varied, instead of one at a time. It is rec-
ommended to use a 2X factorial design when there are
many factors to be investigated, and we want to find out
which factors and which interactions between factors are
the most influential on the response of the experiment.
In this work, our response is the speedup of a PEA. The
2K factorial designs are indicated when the main effects
and interactions are supposed to be approximately linear
in the interval of interest. Quadratic effects, for instance,
would require another design, such as a central composite
design, for an appropriate evaluation.

The objective of this paper is to introduce the fac-
torial design methodology applied to the experimental
performance evaluation of PEAs executed on a multi-
core platform. Our methodology addresses the planning
of experiments and the correct speedup estimation. The
main contributions of this paper are summarized as fol-
lows: (1) the measurement of factor effects on the perfor-
mance of a PEA by varying two levels of each factor, (2)
a method to guarantee the correct estimation of speedup,
and (3) a case study of the influence of migration related
to parameters on the performance of a PEA executed on a
multicore processor.

This paper is structured as follows. In the ‘Related work’
subsection of the ‘Methods’ section, we summarize
some recent works that present proposals of algorithm
evaluation techniques based on factorial design. The
‘Conceptual background’ subsection introduces the theo-
retical concepts that are applied in our experiments. The
implementation, test functions, and computer platform
are described in the ‘Implementation’ subsection of the
‘Results and discussion’ section. The design of our exper-
iments and analyses are described in the ‘Case studies’
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subsection. The ‘Conclusions’ section presents the con-
clusion and further work.

Methods

Related work

There is a distinction among the purposes of the per-
formance evaluation of evolutionary algorithm. In some
works, the goal is to compare different algorithms and
find out which one has the best performance. Others
compare the same algorithm with different configura-
tions, and the goal is to find out which configuration
brings improvements to the algorithm performance. Our
work is related to the latter, specifically to methods that
make use of design of experiments and other statisti-
cal methods. Some of the works presented in Eiben and
Smit’s survey of tuning methods [8] are of the same kind
as ours.

We also relate our work to the evaluation of program
speedups. Touati et al. [9] proposed a performance evalu-
ation methodology applying statistical tools. They argued
that the variation of execution times of a program should
be kept under control and inside the statistics. To do so,
they proposed the use of the median instead of the mean
as a better performance metric because it is more robust
to outliers. The central limit theorem does not apply to
the median but to the mean. In our work, we use the mean
statistic with the awareness that it is not a robust statistic.

On the evaluation of parallel evolutionary algorithms,
Alba et al. [10] presented some parallel metrics and illus-
trated how they can be used with parallel metaheuristics.
Their definition of orthodox speedup is used in this work
(see the ‘Speedup’ subsection).

Coy et al. [11] applied linear regression, the analysis of
variance (ANOVA) test, fractional factorial design, and
response surface methodology to adjust the parameters of
two heuristics based on a local search, both deterministic
procedures. In our work, we deal with nondeterministic
procedures.

Czarn et al. [12] studied the influence of two genetic
algorithm parameters: mutation and crossover rates. They
applied the ANOVA test and multiple comparisons to
find out the significance of the effects of the two param-
eters and their interactions on four benchmark functions.
The authors advocate that the seed of the pseudorandom
generator (PRNG) is a factor that influences the vari-
ability and that its influence should be blocked. Bartz
[13] calls seeds antithetic: they are used to start up a
sequence of pseudorandom numbers and can be used
to reproduce the same sequence of numbers. Here, we
did not block the seed factor, and we followed Rardin
and Uzsoy [14] who recommend to execute several runs
with different PRNG seeds controlling the evolution of
computation to get a sense of the robustness of the
procedure.
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Factorial design has been applied to tune the genetic
algorithm parameters in the works of Shahsavar et al. [15],
Pinho et al. [16], and Petrovski et al. [17]. None of them
addresses a PEA. The parallelism and the randomness of
the algorithm bring additional issues to the application
of statistical methods for the evaluation of performance,
such as the choice of performance measures, the data dis-
tribution of these measures, and the variability brought
by parallel executions. Those issues are addressed in our
work.

Conceptual background
The concepts employed in this work are briefly introduced
in this section.

Parallel evolutionary algorithms

EAs are naturally prone to parallelism since most of their
operators can be easily undertaken in parallel. As Darwin
realized long ago, populations may have a spatial struc-
ture, and this spatial structure may have influence on
population dynamics [18]. The use of a structured pop-
ulation - a spatial distribution of individuals in the form
of either a set of islands or a diffusion grid - determines
the dynamical processes that can take place in complex
systems. In a panmict population, all individuals are a
potential partner for mating. A multideme population is
constituted of isolated populations, called demes. Each
deme can evolve differently than the ones not isolated.
Even if the diversity in the demes is low, the diversity of
the entire population is high [3].

There are different models to exploit the parallelism of
EAs: master-slave model, fine-grained (or cellular) model,
and coarse-grained (or island) model. There are also
hybrid models which are a combination of these three
basic models [10].

The coarse-grained (or island) model is easy to imple-
ment but complex to tune. Each subpopulation evolves
in isolation, and periodically they exchange individuals
with other subpopulations. This migration mechanism
is adjusted by a set of parameters, such as migration
frequency, migration topology, selection strategy of indi-
viduals to migrate, and placing strategy of immigrants.
This model is implemented in our case study.

Experiments with algorithms

Since algorithms are mathematical abstractions, some
researchers in computer science maintain a purely formal
approach on the study of the algorithm behavior. At some
point, the algorithm will be written into a programming
language and run on a computer. This transforms a math-
ematical abstraction into a real-world matter which calls
for a natural science approach: an experimental approach.
Hooker [19,20] was one of the first authors to advocate
that the theoretical approach alone is not able to explain
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how algorithms work on the solution of real problems. He
showed the need of statistical thinking and principles into
the experimental approach on the study of algorithms,
the same that has been done by nature-related science
experimentations.

McGeoch [21], Johnson [22], and Rardin and Uzsoy
[14] are also pioneering authors who brought important
contributions on the formation of an algorithm exper-
imentation science and reinforced the use of statistics
as a systematic way of analysis. Eiben and Jelasity [23]
addressed the necessity of a sound research methodology
supporting results of experiments with EAs.

EAs are nondeterministic algorithms. Their stochas-
tic nature introduces some random variability in the
answer provided by the algorithm: the solution obtained
by the algorithm can vary considerably from one run to
another, and even when the same solution is reached, the
computational time required for achieving such a solu-
tion is usually different for different runs of the same
algorithm.

These characteristics make the theoretical analysis of
EAs more difficult, and most of the studies with EAs are
done with an empirical approach [1]. Also, the present
diversity of computer architectures cannot fit in one
model; the experimentation on current computers is rele-
vant and necessary to gain more precise prognostics about
EA performance and robustness.

Experimental design

Experimentation has been used in diverse areas of knowl-
edge. Statistical design of experiments has the pioneering
work of Sir R.A. Fisher in the 1920s and early 1930s
[24]. His work had profound influence on the use of
statistics in agricultural and related life sciences. In the
1930s, applications of statistical design in industrial set-
tings began with the recognition that many industrial
experiments are fundamentally different from their agri-
cultural counterparts: the response variable can usually
be observed in shorter time than in agricultural exper-
iments, and the experimenter can quickly learn crucial
information from a small group of runs that can be used
to plan the next experiment. Over the next 30 years,
design techniques had spread through the chemical and
the process industries. There has been a considerable uti-
lization of designed experiments in areas like the service
sector of business, financial services, and government
operations [25].

Montgomery [25] defines an experiment as a test or a
series of tests in which purposeful changes are made to
the input variables - factors - of a process or system so
that we may examine and identify the reasons for changes
that may be observed in the output response. Statistical
design of experiments refers to planning the experiment
in a way that proper data will be collected and analyzed
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by statistical methods, resulting in valid and objective
conclusions.

Experimental design has three principles: randomiza-
tion, replication, and blocking. The order of the runs in the
experimental design is randomly determined. Randomiza-
tion helps in avoiding violations of independence caused
by extraneous factors, and the assumption of indepen-
dence should always be tested. Replication is an indepen-
dent repeat of each combination of factors. It allows the
experimenter to obtain an estimate of the experimental
error. Blocking is used to account for the variability caused
by controllable nuisance factors, to reduce and eliminate
the effect of this factor on the estimation of the effects of
interest. Blocking does not eliminate the variability; it only
isolates its effects. A nuisance factor is a factor that may
influence the experimental response but in which we are
not interested.

The experimental planning phases are as follows: (1)
defining of objectives of the experiment, (2) choosing
measures of performance, factors to explore, and factors
to be held constant (3) designing and executing the exper-
iment (gather data), (4) analyzing the data and drawing
conclusions (performing follow-up runs and confirmation
testing to validate the conclusions), and (5) reporting the
experiment’s results [26].

An EA experiment is a set of algorithm’s implementa-
tions that run under controlled conditions to check the
validity of a hypothesis. These controlled conditions are
a set of parameters, a set of execution platforms, a set of
problem instances, and a set of performance measures.

Experimental goals

Computational experiments with algorithms are usually
undertaken for (1) comparing the performance of dif-
ferent algorithms for the same class of problems or (2)
characterizing or describing an algorithm’s performance
in isolation. The former motivation, comparing algo-
rithms, is related to algorithm effectiveness in solving
specific classes of problems. It often involves the com-
parison of a new approach to established techniques. On
the latter motivation, experiments are created to study
a given algorithm rather than compare it with others
[26]. In this work, we are interested in the latter motiva-
tion. Once the goal of the experiment is defined, it will
guide the choice of performance measures, as we describe
next.

Performance measures

An algorithm experiment deals with a set of dependent
variables called performance measures that are affected
by a set of independent variables called factors; there are
the problem factors, the algorithm factors, and the test
environment factors. Since the goals of the experiment
are achieved by analyzing observations of these factors
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and measures, they must be chosen with that aim in
mind.

The stochastic nature of EAs introduces random vari-
ability in the answer provided by the algorithm: the
solution obtained by the algorithm can vary from one
run to another, and even when the same solution is
reached, the computational time required for achieving
such a solution is usually different for different runs of the
same algorithm. In this case, there are two possible per-
formance measures: solution quality and computational
effort.

In some cases, when the convergence can be ensured,
it would be possible to consider the computational effort
required to reach the optimal solution as the only relevant
performance indicator for the algorithm. The scope of this
work is related to such cases.

On traditional computer performance evaluation, Hennessy
and Patterson [27] consider the execution time of real
programs as the only consistent and reliable measure of
performance. Execution times have been continuously
hampered by the variability of computer performance,
specially for parallel programs which are affected by data
races, thread scheduling, synchronization order, and con-
tention of shared resources. In [28], it is shown that mul-
ticore processors bring even more variability to execution
times.

Execution time can be defined in different ways depend-
ing on what we count. The most straightforward defi-
nition of time is called wall clock time, response time,
or elapsed time, which is the latency to complete a task,
including disk access, memory access, input/output activ-
ities, and operating system overhead.

In parallelism, the wall clock execution time is applied
to a formula called speedup, described in the next section.
The speedup is the most commonly used parallel perfor-
mance measure. Other performance measures for parallel
evolutionary algorithms, such as efficiency and incremen-
tal efficiency, are shown in [10,29].

Speedup

For parallel deterministic algorithms, speedup refers to
how much a parallel algorithm is faster than the corre-
sponding best known sequential algorithm. Speedup is
defined by the ratio of T7/T),, where p is the number
of processors, T is the execution time of the sequential
algorithm, and T), is the execution time of the parallel
algorithm with p processors.

For randomized algorithms such as EAs, the previ-
ous definition of speedup cannot be applied directly. As
the execution times of EAs can vary from one run to
another, the algorithm must be replicated and the aver-
age of execution times must be used. Thus, the speedup
Sy for PEAs is the ratio between the average execu-
tion time on one processor T; and the average execu-
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tion time on p processors Tp, as shown in the following
equation:

B (Zik=1 Tlt) /k W
(X my) s

where the metrics T7; and T); correspond to wall clock
times for the k sequential executions and the m parallel
executions on p processors, respectively. This definition of
speedup is the one adopted in this work, and it coincides
to the weighted ratio definition in Equation (4).

In [10], the authors also recommend that the PEA
should compute solutions having a similar accuracy as the
sequential ones. This accuracy could be the optimal solu-
tion, if known, or an approximation solution, as though
both algorithms produce the same value at the end. The
stopping criterion of compared algorithms should be to
find the same solution. The authors also advise to exe-
cute the parallel algorithm on one processor to obtain
the sequential times. Thus, we have a sound speedup,
both practical, i.e., no best known algorithm needed, and
orthodox, i.e., same codes, same accuracy.

The speedup Sy, is classified as superlinear when we have
Sp > p, sublinear when we have S, < p, and linear when
Sp is approximately p.

Sp =

Gl

Central limit theorem

Let Xi,Xy,...,X, be n-independent random variables
with finite mean u and variance o2. The central limit
theorem (CLT) states that the random variable

n
Sumn = ZXi (2)
i=1

converges toward a normal distribution N (nu, no?), as n
approaches co.

The CLT says that, even if a distribution of perfor-
mance measurements is not normal, the distribution of
the sample mean tends to a normal distribution as the
sample size increases. For practical purposes, it is usually
accepted that the resulting distribution is normally dis-
tributed when n > 30 [30]. Experimenters often mistake
distribution of performance measurements and distribu-
tion of sample means.

An important application of CLT in this work arises in
the estimation of speedup as the ratio of two means, Tp
and T7;. If the number of algorithm runs is large enough,
the distribution of T}, and T; will be nearly normally
distributed. This makes the speedup a ratio of two nor-
mally distributed random variables, and it has important
implications as we describe in the next section.

Ratio of two independent normal random variables
The distribution F, of the ratio Z = X/Y of two nor-
mal random variables X and Y is not necessarily normal.

Page 5of 17

On the performance evaluation of parallel genetic algo-
rithms (PGAs), if we adopt the speedup as the perfor-
mance measure, we will need to ensure that the speedup
density distribution approximates to a normal density
distribution.

In this section, we describe two works that address
the mean estimation of the ratio of two random vari-
ables which are normally distributed: Qiao et al. [7] and
Diaz-Francés and Rubio [6].

Consider a sample of #n observations (X,Y) from
a bivariate normal population N(uyx,uny,ox,oy,p),
Mxs by # 0 and X and Y are uncorrelated. In [7], the
arithmetic ratio Ry is given by

_ XY
.71 "
n
and the weighted ratio Ry is given by
~ X X; X;
Ry =& = XX _ 2 Xi @

Y Y Yin YV

Since X ~ N(uy,ox) and Y ~ N(uy,oy), it follows
that X ~ N(ux,ox/~/n) and Y ~ N(uy,oy//n). The
coefficient of variation of Y is 8y = oy /uy and the coeffi-
cient of variation of Y is 0y = oy/uy/n.

The simulations in [7] demonstrated that as long as
8y < 0.2, both Ry and R4 are sound estimators of Ly //Ly.
Otherwise, if 7 < 0.2, Ry is an acceptable estimator of
UX/Iy.

In practical situations, the population mean p and
standard deviation o, if unknown, can be estimated by
the sample mean and the sample standard deviation. In
[7], an estimator of a sufficiently large sample size ng
given by

ng > 25(s2/Y°), (5)

where S%, is the sample variance and Y is the sample
mean.

Another approach is presented by Diaz-Francés and
Rubio in [6]. They demonstrate the existence of a nor-
mal approximation to the distribution of Z = X/Y, in an
interval I centered at B = E(X)/E(Y), which is given for
the case where both X and Y are independent, have pos-
itive means and their coefficients of variation fulfill the
conditions stated by the Theorem 1.

Theorem 1. (Diaz-Francés and Rubio [6]) Let X be a nor-
mal random variable with positive mean |, variance 0)2(,
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and coefficient of variation 8x = ox/ux such that 0 <
8x < A <1, where A is a known constant. For every ¢ > 0,

there exists y (€) € <O, JAZ — 8)2(> and also a normal ran-

dom variable Y independent of X, with positive mean Ly,
variance 012, and coefficient of variation §y = oy/uy that
satisfy the conditions,

0<8y <y(e) < JA2—8% <r <1, (6)

for which the following result holds.
Any z that belongs to the interval

oz oz
-] ;

p-Zp+ 2 )
where B = ux/uy, oz = B 8)2( + 8%, satisfies that

1G(2) — Fz(2))| < ¢, (8)

where G(z) is the distribution function of a normal ran-
dom variable with mean B, variance a%, and Fyz is the
distribution function of Z = X /Y.

Theorem 1 states that for any normal random variable
X with positive mean and coefficient of variation §y < 1,
there exists another independent normal variable Y with
a positive mean and a small coefficient of variation, ful-
filling some conditions, such that their ratio Z can be
well approximated within a given interval to a normal
distribution.

The circumstances established by [7] and [6] under
which the ratio of two independent normal values can be
used to safely estimate the ratio of the means are checked
in our estimation of the speedup ratio.

Factors

In general, experiments often involve several factors
which can have some influence on the output response.
In [26], the factors that affect the performance of algo-
rithms are categorized in the problem, algorithm, and test
environment factors.

Problem factors comprise a variety of problem char-
acteristics, such as dimensions and structure. Algorithm
factors, specially for EAs, include multiple parameters
related to its strategy to solve the problem, such as type
of selection, mutation, and crossover, and in the case of
PEAs, parameters related to parallel strategies, such as
migration parameters.

It is necessary to select which factors to study, which
to fix, and which to ignore and to hope that they will
not influence the experimental results. The choice of
experimentation factors and their values is central to the
experimental design.
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2k Factorial design

A 2K factorial design involves k factors, each at two levels.
These levels can be quantitative or qualitative. The level
of a quantitative factor can be associated with points on
a numerical scale, as the size of population or the num-
ber of islands. For qualitative factors, their levels cannot
be arranged in order of magnitude, such as topologies, or
strategies of selection. The two levels are referred as ‘low’
and ‘high’, and denoted by ‘—" and ‘4, respectively. It does
not matter which of the factor values is associated with the
‘+’” and which with the ‘-’ sign, as long as the labeling is
consistent.

At the beginning of a 2 factorial design, factors and
levels are specified. When we combine them all, we get a
design matrix. Table 1 shows the design matrix of the 23
factorial design.

For each combination of levels, also called treatment,
the studied process is executed and the response variable
y is collected.

After the data collection, the effects of factors can be
calculated, and with appropriate statistical tests, we can
determine whether the output depends in a significant
way on the values of inputs. There are several excellent
statistic software packages that are useful for setting up
and analyzing 2* designs. In our experiments, we use the
R [31] open source software environment for statistical
computing and graphics.

Basically, the average effect of a factor is defined as the
change in response produced by a change in the level of
that factor averaged over the levels of the other factors.
The two-way interaction AB effect is defined as the aver-
age difference between the effect of factor A at the high
level of factor B and the effect of A at the low level of B.
The three-way interaction ABC occurs when there is any
significant difference in two-way interaction plots corre-
sponding to different levels of the third factor. For more
details on this and other experimental designs, the reader
is referred to [25,32].

Table 1 Notation of factors and level in a standard or
Yates’ order for the 23 factorial design

Run A B C Treatment Coded factors y
A B C
1 - - - (1) -1 =1 =1y
2 + - - a +1 =1 -1
3 — + - b -1 +1 -1 3
4 + o+ - ab 1+ =Ty
5 - -+ c —1 —1 +1 s
6 + - + ac +1 =1 +1 Y6
7 -+ o+ bc —1 +1 +1 oy
8 + + + abc +1 +1 +1 V8
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Regression model of the 2¥ design

The results of the 2X factorial design can be expressed in
terms of a regression model. For the 22 factorial design,
the effect full model is

¥y = Bo + Bix1 + Baxo + Broxixn + € )

where y is the response, B are regression coefficients
whose values are to be determined, x; are predictor vari-
ables that represent coded factors levels: —1 and +1, and
€ is the random error term. The method used to esti-
mate the unknown coefficients 8 is the method of least
squares [33].

Regression coefficients are related to effect estimates.
The Bo coefficient is estimated by the average of all
responses. The estimates of 8; and S, are one half the
value of the corresponding main effect. In the same way,
the interaction coefficients, as B12, are one half the value
of the corresponding interaction effect.

In regression, the R? coefficient of determination is a
statistical measure of how well the regression line approx-
imates the real data points. An R? of 1 indicates that the
regression line perfectly fits the data. The adjusted R? is
almost the same as R?, but it penalizes the statistic as extra
variables are included in the model.

Other measures have been developed to assess the
model quality. The Akaike information criterion (AIC),
the Chi-square test, the cross validation criterion, and
others are methods used to compare models with different
numbers of predictor variables [34]. These methods are
useful in the model selection, one of the steps of the analy-
sis of the 2X factorial design (the ‘Analysis of the 2% design’
subsection) where it is verified whether all the poten-
tial predictor variables are needed or a subset of them
is adequate. The number of possible models grows
with the number of predictors, which makes the selec-
tion a difficult task. Presently, there are a variety of
automatic computer search procedures to simplify this
task [33].

This model requires some assumptions to be satisfied:
the errors are normally and independently distributed
with constant variance 2. Violations of the basic assump-
tions and model adequacy can be easily investigated by
the examination of residuals. Residuals are the differ-
ence between observed values and estimated values. If the
model is adequate, the residuals should be structureless.
Any suggestion of a pattern may indicate other problems
such as a model misspecification due to either nonlin-
earity or the omission of important predictor variables,
presence of outliers, and nonindependence of residuals.

The usual procedure for checking the normality
assumption is to construct a normal probability plot of
the residuals. If the underlying error distribution is nor-
mal, this plot will resemble a straight line. The constant
variance of error assumption is easily verified if we plot
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the residuals versus the fitted values. This plot should not
reveal any obvious pattern. To check for independence,
in a plot of the residuals against time, if known, residuals
should fluctuate in a more or less random pattern around
the baseline zero.

Graphical analysis of residuals is inherently subjective,
but frequently residual plots may reveal problems with
the model more clearly than formal statistical tests. For-
mal tests like the Durbin-Watson test (independence),
Breusch-Pagan test (constant variance), and Shapiro-
Wilk test (normality) can check the model assumptions
[33]. More about formal tests in the ‘Implementation’
subsection.

If a violation of the model assumptions occurs, there
are two basic alternatives: (1) abandon the linear regres-
sion model and develop and use a more appropriate
model, or (2) employ some transformation to the data.
The first alternative may result in a more complex model
than the second one. Sometimes, a nonlinear function
can be expressed as a straight line using a suitable trans-
formation. More on data transformation can be found
in [25,33].

Analysis of variance

The analysis of variance (ANOVA) test is a statistical test
which is used to compare means of two or more inde-
pendent normal samples. It produces an F statistic that
calculates the ratio of the variance among the means to
the variance within the samples [33].

The ANOVA assumptions are the same as the regres-
sion model assumptions described in the ‘Regression
model of the 2 design’ subsection. The ANOVA is robust
to the normality assumption. If the assumption of homo-
geneity of variances is violated, the ANOVA test is only
slightly affected in the balanced (equal sample sizes in all
treatments) fixed effect model. Lack of independence of
error terms can have serious effects on the inferences in
the analysis of variance [33].

Analysis of the 2% design
The statistical analysis of the 2X design follows the
sequence of steps described:

1. Estimate factor effects. The factor effects are
estimated, and their signs and dimensions are
examined for a preliminary information regarding
which factors and interactions may be important and
in which directions these factors should be adjusted
to improve the response.

2. Perform statistical testing. Many implementations of
the 2% factorial design rely on replications where
each replicate represents a set of 2K runs. When the
design is replicated, for a full model as in
Equation (9), the ANOVA can be applied to indicate
whether one factor is more influential than another.
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There are other methods to determine which effects
are nonzero. The standard error of the effects can be
calculated, and then confidence intervals on the
effects are established. Box et al. [32] state a rough
rule: effects greater than two or three times their
standard error are not easily explained by chance
alone.

For an unreplicated design, there is a method due to
Cuthbert Daniel [35], in which effects are plotted on
a normal probability plot. The effects that are
negligible are normally distributed with mean zero
and variance o2 and will tend to fall along a straight
line on this plot. The significant effects will have
nonzero means and will not lie along the straight
line. An estimate of error can be obtained with the
combined negligible effects. The formal tests of
statistical significance are important to find out
effects that are due to sampling error.

We should not confuse statistical significance with
practical significance - whether an observed effect is
large enough to matter. The statistical significance
does not prove practical importance, but a practically
significant effect should not be claimed unless it is
statistically significant [14].

3. Refine the model. The model is adjusted as any
nonsignificant factor can be removed from the model.

4. Check the model adequacy. The residual analysis is
performed to check for model adequacy and
assumptions. If it is found that the model is
inadequate or if assumptions are badly violated, it is
necessary to refine the model (step 3).

5. Interpret results. When examining the magnitude
and sign of the factor effects, we can determine which
factors are likely to be important. The main effect of a
factor should be individually interpreted only if there
is no evidence that the factor interacts with other
factors. If the interaction is present, the interacting
factors must be considered jointly. The negative sign
on an effect indicates that a change from low level —
to high level + will reduce the response variable.

Results and discussion

Implementation

The technical choices for the programming language and
libraries are described in this section. Genetic algorithms
(GA) are a widely used subfamily of EAs, which are
stochastic search methods designed for exploring com-
plex problem spaces in order to find optimal solutions
using minimal information on the problem to guide the
search.

We implemented a PGA with multiple populations
following the island model (coarse-grained model). We
named this implementation PGA-I. The population was
divided into subpopulations, or islands, that evolve their
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local population in parallel. One of them was called cen-
tral process, and it controlled the synchronization of all
other subpopulations.

The parameters used in canonical GAs were kept fixed
at the values shown in the Table 2 throughout the exper-
imentation. The parameters related to the migration pro-
cedure were varied. They are shown in Table 3.

The efficiency of C/C*™ compilers and the large num-
ber of available libraries led us to choose C/C** for
coding. The known sensitiveness of GAs to the choice of
the PRNG motivated the option to a high-quality PRNG
[36]. We chose a combination of the SIMD-oriented Fast
Mersenne Twister (SFMT) and the The Mother-of-All
Random Generators (MoA) available in the A. Frog
library [37].

For parallelization, we chose a Message Passing Inter-
face (MPI) library called MPICH2 [38]. The MPICH2 is a
message passing interface library with tested and proved
scalability on multicores [39] and proved performance of
message passing on shared memory [40].

The PGA-I was executed on a multicore Intel Xeon
E5504, with two CPUs, four cores each at 2 GHz, 256-
KB cache L2, 4-MB cache L3, FSB at 1,333 MHz, 4 GB,
Ubuntu 10.04 LTS (kernel 2.6.32).

The data analysis was performed using R, the free soft-
ware environment for statistical computing and visualiza-
tion [31]. The following formal statistical tests available
in R were employed: the Shapiro-Wilk test of normal-
ity, shapiro.test from the stats package [31]; the
Breusch-Pagan test of constant variance, ncvTest from
the car package [41]; and the Durbin-Watson test of
independence, dwtest from the Imtest package [42].

Case studies

The goal of our experimentation was to find out which
of the factors that affects the speedup of the PGA-I the
most when solving the selected test functions (see the
‘Test functions’ subsection). We selected seven factors

Table 2 Fixed canonical parameter settings

GA parameter Value

Encoding Real numbers
Selection Tournament
Crossover rate 09

Mutation rate 0.001
Crossover operator SBX

Stop criterion fras: Optimal solution and
fros: Near-optimal solution (10~19),
or 6 x 10° maximum generations for both

Problem size 30 dimensions

SBX, simulated binary crossover operator.
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Table 3 Factors and levels

Id Factors Coded levels
High level (+) Low level (—)
Proc Number of islands 4 16
Top Topology Single ring All-to-all
Rate Migration frequency 10 100
Pop Population size 1,600 3,200
Nindv Amount of migrants 1 5
Sel Selection strategy Random Best fitted
Rep Replacement strategy Random Worst fitted

related to the migration parameters to investigate, as
described in Table 3.

The 27 factorial design matrix was built as described in
the ‘2% Factorial design’ subsection, with two additional
lines related to sequential execution times, each with the
population size of 1,600 and 3,200 individuals?. It adds up
to 130 different configurations to be tested. A PRNG was
used to determine the execution order and, for each treat-
ment, the wall clock execution time was captured. As the
speedup requires an estimate of sequential and parallel
times, we replicated the experiment #n times. We started
with # = 40, and it was increased when necessary.

The conditions of the speedup ratio distribution to
approximate to a normal distribution, as established in the
‘Ratio of two independent normal random variables’ sub-
section, were checked. If the conditions were not satisfied,
the number of replications was increased and the condi-
tions were verified again. Then, the analysis of the 27 fac-
torial design, as described in the ‘Analysis of the 2% design’
subsection, was performed. The statistical significance
level of 0.05 and the practical significance of effects larger
than 10% of the average speedup were considered in our
analysis.

The following notation is used in this work: we denoted
the two sets of sequential execution times by X, where p
is the population size and j is the replicate, and denoted
the 128 sets of parallel execution times by Y;;, where i
is the treatment number and j identifies the replicate.
Sample means and sample standard deviations were used
on estimated coefficients of variation 3.

This procedure was performed for each test function, as
described in the ‘Rosenbrock function - 27 factorial
design’ and ‘Rastrigin function - 27 factorial design’
subsections.

Test functions

The selected test functions are well known and have been
used in benchmarks, such as the CEC 2010 [43]. They are
the Rastrigin function (fras) and the Rosenbrock function
(fros)- The former is one of the De Jong test functions and
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Table 4 Sequential execution times summary - Rosenbrock
function

Pop Minimum  First Median Mean  Third Maximum
quartile quartile

1600 216,867 218,285 219202 219,153 219,752 223377

3200 426218 430814 431,824 431,861 433,025 435554

is relatively easy for GAs to solve. It is a nonlinear mul-
timodal and separable function with a large number of
local minima. The latter is a nonseparable function, and its
global minimum is inside a long, narrow, parabolic-shaped
flat valley. Even though it is trivial to find the valley, to
converge to the global minimum is difficult.These func-
tions were chosen by their different characteristics, and
the experiments yielded different results for both.
The test function formulas are given:

q

fras(X) =10g + ) (7 — 10 cos(2mx;)),
i=1

(10)

where ¢q is the dimension, —5.12 < x; < 5.12, and its
global minimum is fras(X*) = 0, and X* =[0,0,...,0].
We tested it with 30 dimensions (g = 30).

gq—1
fros¥) =Y [(1 = x)” + 1001 — 27)°],

i=1

(11)

where ¢ is the dimension, —2.0 < x; < 2.0, and its global
minimum is fres(X*) = 0, and X* = [1,1,...,1]. We
tested it with 30 dimensions (¢ = 30) and searched for a
near-optimal solution equal or less than 10719,

Rosenbrock function - 27 factorial design

The 27 factorial design plus two treatments for the
sequential executions were replicated 40 times. It con-
stituted a matrix with 40 columns and 130 lines filled
with execution times. The execution times added up to
approximately 120.4 h.

Table 4 presents statistics of the sequential execution
times for each population sizes. Both estimated coeffi-
cients of variation 8y, ,, and x,,,, were lower than 0.2.

For the Yj; parallel execution times, the maximum val-
ues of 8y, was 0.297, and the maximum value of 371,

was 0.047. All 37,' were under 0.2, as recommended in
the ‘Ratio of two independent normal random variables’

Table 5 Speedup summary - Rosenbrock function

Min First Median Mean Third Maximum
quartile quartile
2.36 341 3.70 391 4.30 7.69
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Table 6 Factor levels for the lowest and highest observed
speedup - Rosenbrock function

Id Factors Lowest speedup  Highest speedup
Proc Number of islands 16 16

Top Topology Single ring All-to-all

Rate Migration frequency 100 10

Pop Population size 1,600 3,200

Nindv  Amount of migrants 1 1

Sel Selection strategy Best fitted Best fitted

Rep Replacement strategy ~ Worst fitted Worst fitted

subsection. The conditions established by Theorem 1
were satisfied. Thus, the distribution of the speedups,
calculated by the weighted ratio formula (4), had an
approximation to a normal distribution.

The summary shown in Table 5 gives a mean speedup
of 3.91. There were 14 superlinear speedups observed for
the PGA-I running on four islands.

The lowest and the highest speedups were observed
when factors Proc, Top, Rate, Pop, Nindv, Sel, and Rep
were set at + — + — — + + and + + — + — + + levels,
respectively, as shown in Table 6.

At first, there was one speedup estimate for each treat-
ment, and we had an unreplicated factorial. We started by
assuming that all four-factor and higher interaction terms
are unimportant®. The estimated effects of the third-
order model of the 27 unreplicated factorial design were

o Pop
o Sel
o Proc:Pop
N o Top:Rate
e Nindy
o Top:Rate:Sel
H
— 7 (
2
!
&
T °
8
3
g
=)
—
«
N
[ o Proc:Top
o Top
e Rate
T T T T T
-10 -5 0 5 10
Sample Quantiles
Figure 1 Normal probability plot of the estimated effects of the
27 factorial design - Rosenbrock function.
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displayed in a normal probability plot. The significant
effects are identified in Figure 1.

The factor Rep and all interaction involving Rep were
negligible. We dropped the factor Rep from the experi-
ment. The design became a 2° factorial with two repli-
cations. The projection of an unreplicated factorial into
a replicated factorial in fewer factors is called design
projection [25].

The analysis of the residuals of the third-order linear
model for the 2° factorial design revealed that the spread
of the residuals was increasing as the predicted speedup
values get larger, an indication of nonhomogeneity vari-
ance, shown in Figure 2a. The Breusch-Pagan test [44]
confirmed that the error variance changes with the level
of the predicted speedup.

A log transformation of the speedup was performed,
where y* =log(y). For the log-transformed speedup
model, the residual versus predicted value plot is shown in
Figure 2b.

Following the log data transformation, an automatic
search procedure for model selection based on the AIC
criterion was performed. Table 7 presents the adjusted

(a)
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z 20068 & °©
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° o]
-
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! ]
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Predicted speedup

(b)
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[elye]

-0.05
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Predicted log(speedup)
Figure 2 Residual versus predicted value plot for third-order

model for the 26 factorial design - Rosenbrock function.
(@) Before data transformation and (b) after log data transformation.
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Table 7 Adjusted linear regression model for the 26
factorial design following log data transformation -

Rosenbrock function

Estimate  Standard error t value Pr(>|t])
(Intercept) 1338 0.0035 385842 <2e—16
Top 0.098 0.0035 28141 <2e—16
Pop 0.096 0.0035 27.677 <2e—16
Rate —0.095 0.0035 —27.481 <2e—16
Sel 0.075 0.0035 21.558 <2e—16
Nindv 0.029 0.0035 8223 598e—13
Proc 0.018 0.0035 5114 1.45e—06
Rate:Sel —0.054 0.0035 —15616  <2e—16
Top:Sel 0.021 0.0035 5998  2.93e—08
Top:Proc 0.066 0.0035 19125  <2e—-16
Pop:Proc 0.055 0.0035 15.785 <2e—16
Rate:Proc —0.041 0.0035 —11.726 <2e—16
Top:Rate —0.017 0.0035 —5.039 1.98e—06
Top:Pop —0.014 0.0035 —4.045 0.0001
Sel:Proc 0.014 0.0035 3.940  0.0001
Top:Nindv —0.013 0.0035 —3.662  0.0004
Rate:Nindv —0.012 0.0035 —3511  0.0007
Sel:Nindv 0.010 0.0035 2740 0.0072
Pop:Rate 0.008 0.0035 2308  0.0230
Top:Rate:Sel —0.015 0.0035 —4.305 3.80e—05
Rate:Sel:Proc —0.012 0.0035 —3.522 0.0006
Top:Pop:Proc —0.011 0.0035 —3.075 0.0027
Top:Sel:Nindv —0.010 0.0035 —2934  0.0041
Top:Rate:Proc —0.008 0.0035 —2.183 00313

regression model for the 2° factorial design following
the log data transformation. The adjusted model with all
significant terms is given by

3’/; = 1.338 4+ 0.018x71 + 0.098x3 — 0.095x3 + 0.096x4
4+ 0.029x5 + 0.075x6 — 0.054x3x6 + 0.021x2%6
+ 0.066x2x1 + 0.055x4x17 — 0.041x3%71
— 0.017x7x3 — 0.014x2x4 + 0.014x6x7
— 0.013x5x5 — 0.012x3x5 + 0.010x6x5
+ 0.008x4x3 — 0.015x0x3x¢
— 0.012x3x6x1 — 0.011x9x4.%1

— 0.010x2x6x5 — 0.008x2x3%x1,
(12)

where the coded variables x1, X3, x3, x4, x5, and xg
represent factors Proc, Top, Rate, Pop, Nindv, and Sel,
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Figure 3 Residual analysis for the adjusted model
(12) - Rosenbrock function. (a) Normal probability plot of residuals.
(b) Plot of residuals versus predicted log (speedup).

respectively. This model presented a residual standard
error equal to 0.0392 on 104 degrees of freedom, the coef-
ficient standard error was 0.00347, and the R* was 0.975,
which means the factors and interactions in the model
explained approximately 98% of the variation in j//:k The
adjusted R* was 0.969.
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Figure 4 Cook’s distance plot - Rosenbrock function.
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Figure 5 Bar plot of the back-transformed estimated effects for
the adjusted model (12) - Rosenbrock function.

Figure 3 presents the normal probability plot of resid-
uals and the plot of residuals versus predicted values. No
unusual structure was apparent, and most of the residuals
in the normal probability plot resembled a straight line,
apart from residual 98.

Formal tests of equality of variances and normality
and independence for the reduced model were executed.
At a significance level of 0.05, the Breusch-Pagan test
(p value = 0.24) could not reject the hypothesis that the
residuals have a homogeneous variance, and the Durbin-
Watson test (p value = 0.26) also could not reject the
hypothesis that the residuals are independent. However,
the Shapiro-Wilk test (p value = 6.851e — 08) rejected the
hypothesis that the errors are normally distributed.

Moderate departures from normality are of little con-
cern in the fixed effect analysis of variance, though
outlying values need to be investigated [25]. Formal
tests to aid in evaluation of outlying cases have been
developed, such as the Cook’s distance, the studentized
residuals and the Bonferroni test [33]. We run the R
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function outlierTest from the car package [41], and
residual 98 had the Bonferroni adjusted p value < 0.05.
Figure 4 shows the that residual 98 had the largest Cook’s
distance.

The adjusted model made without observation 98
showed that the inferences were not essentially changed.
Observation 98 did not exercise undue influence so that
no remedial measure was performed. We concluded that
the model for 5/:" given by Equation (12) was satisfactory,
and we could estimate the speedup using back transfor-
mation given byy = &".

The log transformation has a multiplicative interpreta-
tion, e.g., adding 1 to log(y) multiplies y by e, where e is
approximately 2.72. The bar plot of the statistically and
practically significant back-transformed estimated effects
for the adjusted model is displayed in Figure 5.

Discussion The effect of Nindv and its interactions were
smaller than 10%, which is statistically but not practi-
cally significant. This could be due to the small difference
between the high and low levels of Nindv. The high level
was defined as five individuals based on the high level of
number of islands, population size, and migration topol-
ogy. When there were 16 islands and 1,600 total popula-
tion size, each island had 100 individuals. If the topology
was the all-to-all type, each island would receive a num-
ber of migrants equal to the number of islands versus the
number of migrants. This calculation should be less than
the island population.

The two-factor interactions, namely Proc:Top, Proc:
Pop, and Rate:Sel, were statistically and practically signifi-
cant. They are shown in Figure 6.

The effect of the Proc:Top interaction was 0.133 on
log(speedup), i.e., 14.2% speedup increase. With Proc
set at the low level with four islands, the speedup was
increased by 6.5% when Top changed from the ring to
all-to-all topology. With Proc set at the high level with 16
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Table 8 Summary of sequential execution times for 1,000
replicates - Rastrigin function

Pop  Minimum First Median Mean Third Maximum
quartile quartile

1,600 2,544 2,672 2,699 6,770 2,729 551,307

3,200 5112 5,309 5351 5358 5397 6,516

islands, the change from ring to all-to-all topology had the
effect of 38.8% increase on the speedup.

The factors Proc and Pop interacted with effect size
of 11.6% speedup raise. With Proc set to four islands,
speedup increased by 8.6% as Pop modified from 1,600
to 3,200 individuals. When Proc was 16 islands, speedup
increased by 35.2% as Pop changed from 1,600 to 3,200
individuals.

The effect of Rate:Sel interaction was a 10.3% speedup
decrease. At the low level of Rate, migration at every 10
generations, the speedup increased by 29.4% when Sel
changed from random to best-fitted selection strategy.
With Rate set to 100 generations, the speedup increased
by 4.2% when factor Sel changed from low to high level.

Some of the three factor interactions were statistically
significant, but their effects had a small influence on the
speedup, which was less than 10%.

Rastrigin function - 27 factorial design

The 27 factorial design plus two treatments for the
sequential executions were replicated 40 times. It consti-
tuted a matrix with 40 columns and 130 lines filled with
execution times. The execution times added up to approx-
imately 21.3 h. The conditions to the ratio distribution to
approximate to a normal distribution were checked.

The estimated 8x,, was >1. Thus, it did not satisfy
Theorem 1. For the parallel execution times, the esti-
mated Syi ranged from 0.014 to 4.998 and the estimated
37,' ranged from 0.020 to 0.790. Some 37,' were higher than
the recommended limit of 0.2 (see the ‘Ratio of two inde-
pendent normal random variables’ subsection). There was
no guarantee of the existence of a normal approximation
to the distribution of the speedup.

A sample of a sufficiently large size reduces éy . The
estimator of the sample size is given by Equation (5).
We applied this to the Yj; sample and found #s; > 624.
Although some of the Y; have a small coefficient of vari-
ation, the full factorial was replicated 1,000 times and the

Table 9 Summary of sequential execution times after the
removal of extreme values - Rastrigin function

Pop  Minimum First Median Mean Third Maximum
quartile quartile

1,600 2,648 2,678 2,699 2,701 2,722 2,764

3,200 5270 5318 5351 5352 5385 5453
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Table 10 Speedups summary - Rastrigin function

Minimum First quartile Median Mean Third quartile Maximum

0.01 0.65 3.04 2.32 3.65 4.85

data were kept balanced. The execution times added up to
approximately 438 h.

The analysis of the 1,000 replicates of the 27 factorial
design produced the X, summary statistics presented in
Table 8. X600 showed extremely high values that were
unusually far from other observations. Extreme values
could also be seen among Y;. The mean is not robust
to extreme values. It is affected more by outliers than
the median. According to [45], the mean exploits the
sample because it gives equal weight to each observa-
tion. Contrarily, the median is resistant to several outlying
observations since it ignores a lot of information.

The trimmed mean is a robust estimator of central ten-
dency. To find a trimmed mean, the x% largest and small-
est observations are deleted, and the mean is computed
using the remaining observations. In fact, the median is
just a trimmed mean with the percentage of trim equal to
50% [46].

We applied the trimmed mean with the percentage of
trim equal to 10% to estimate X, and Y; in the speedup
estimation. This procedure was equivalent to sort X, and
Y; observations and discarded 10% of the smallest and 10%
of the largest values from each one.

Table 9 presents the summary statistics for X, after
the trimming procedure. The estimated coefficients of
variation SXp and Syp were under 0.0107 and 0.0004,

receptively. The estimated coefficients of variation 8y, and
371- were under 1.529 and 0.0541, respectively. These val-
ues did not satisfy the conditions stated in Theorem 1,
but they satisfied the condition of SAYZ, being under 0.2,
described in the ‘Ratio of two indepen- dent normal ran-
dom variables’ subsection. The weighted ratio given by
Equation (4) was preferable to estimate the speedup. The
mean speedup of all 128 observations was 2.32, as shown
in Table 10.

Table 11 Factor levels for the lowest and the highest
observed speedup - Rastrigin function

Id Factors Lowest speedup Highest speedup
Proc Number of islands 16 16

Top Topology Single ring All-to-all

Rate Migration frequency 100 10

Pop Population size 1,600 3,200

Nindv  Amount of migrants 1 5

Sel Selection strategy Random Random

Rep Replacement strategy ~ Random Worst fitted
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Figure 7 Normal probability plot of the estimated effects of the
27 factorial design - Rastrigin function.

There were 38 sublinear speedups, all of them occurred
when running on 16 islands, and two superlinear
speedups when running on four islands. The lowest and
the highest speedups were observed when factors Proc,
Top, Rate, Pop, Nindyv, Sel, and Rep were set at + — + —
— — —and + + — + + — + levels, respectively, as shown
in Table 11.

Then, we proceeded to the analysis of the unreplicated
27 factorial design. Figure 7 presents the normal probabil-
ity plot of the estimated effects.

The factor Rep and all interactions involving Rep
were negligible. We dropped the factor Rep from the
experiment. The design became a 2° factorial with two
replicates.
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Figure 8 Plot of residuals versus predicted speedups for the
third-order model for 27 factorial design - Rastrigin function.
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Figure 9 Normal probability plot of residuals for the 2° factorial
design - Rastrigin function.

Figure 8 shows the plot of residuals of the third-order
model 2° factorial design against the predicted values.
The residuals looked structureless. The normal probabil-
ity plot of the residuals resembled a straight line, as shown
in Figure 9.

From the third-order linear regression model for the 2°
factorial design, an automatic search procedure for model
selection based on the AIC criterion resulted in the model
described in Table 12. The adjusted model was built as
follows:

7y = 2.318 — 0.816x1 + 0.327xp — 0.269x3 + 0.529x4

+ 0.296x5 + 0.320x2x3,
(13)

where the coded variables x1, %3, x3, x4, and x5 repre-
sent factors Proc, Top, Rate, Pop, and Nindv, respectively.
This model presented a residual standard error of 0.978 on
121 degrees of freedom, and R? was 0.593, which means
that the model explained 59% of the variation of 3. The
adjusted R* was 0.573.

Formal tests of equality of variances, normality, and
independence on the reduced model were executed.
The Shapiro-Wilk test (p value = 0.13), the Breusch-
Pagan test (p value = 0.06), and the Durbin-Watson test

Table 12 Third-order linear regression model for the 26
factorial design - Rastrigin function

Estimate Standard error t value Pr(>|t])
(Intercept) 2318 0.0864 26.821 <2e—16
Proc —0.816 0.0864 —9.445 338e—16
Pop 0.529 0.0864 6.121 1.19e—08
Top 0327 0.0864 3.789 0.0002
Nindv 0.296 0.0864 3423 0.0008
Rate —0.269 0.0864 —3.110 0.0023
Top:Rate 0.320 0.0864 3.700 0.0003
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Figure 10 Plot of residuals versus predicted speedups for the
adjusted model (13) - Rastrigin function.

(p value = 0.20) did not reject the null hypotheses of
nonnormality, nonhomogeneity and nonindependence of
residuals, respectively.

Figure 10 presents a plot of the residuals versus pre-
dicted speedup, and Figure 11 presents the normal proba-
bility plot of the residuals for this adjusted model. Though
the formal tests did not indicate any problem, Figure 10
shows some nonlinear pattern. The small coefficient of
determination R? also corroborated that the model might
be improved if higher order terms were added to the
model or other predictor variables were considered. The
bar plot of the absolute value of the estimated effects is
presented in Figure 12. All effects were practically signif-
icant because they were higher than 0.23, i.e., 10% of the
mean speedup.

Discussion The factor Proc had the largest main effect
of —1.63. Changing Proc from 4 to 16 islands dropped
the mean speedup by 1.63. Factor Pop had the second
largest main effect of 1.06. If the population size increased
from 1,600 to 3,200, the speedup increased by 1.06. The

Sample Quantiles

Theoretical Quantiles

Figure 11 Normal probability plot of residuals for the adjusted
model (13) - Rastrigin function.

Proc |

Pop |

Top:Rate

Factors

Nindv

T T T T
0.0 0.5 1.0 1.5

Effect dimension

Figure 12 Bar plot of the absolute estimated effects for the
adjusted model (13) - Rastrigin function.

main effect of Nindv was 0.6. The speedup increased
when the number of migrants changed from one to
five.

The effect of interaction Top:Rate was 0.64, and it is
shown in Figure 13. With factor Top set to ring topology,
when Rate changed from 10 to 100 generations, the mean
speedup dropped by 1.18. With factor Top set to all-to-all
topology, the mean speedup increased by 0.10 as the Rate
changed from 10 to 100 generations.

Rastrigin is a multimodal function, and it presented exe-
cution times with higher coefficient of variation when
compared to the Rosenbrock function. This variability
affects the sharpness of the statistics, and a larger number
of replicates was necessary. This was also reflected on the
higher error estimates.

The execution times of PGA-I on solving the Rastri-
gin function presented some extreme execution times. We
investigated these outlying values, and we could repro-
duce them using the same PRNG seed. They were not

Top:Rate

Speedup
)

Top

Figure 13 Interaction plot of the two-factor interaction effect
Top:Rate - Rastrigin function.
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due to erroneous measures, failures of registry, or exter-
nal perturbations. By trimming them, we were effectively
discarding information about the best and worst perfor-
mances of the algorithm. The distribution of the execu-
tion times were also changed. This is a limitation of our
method.

Conclusions

This paper introduced a method to guarantee the correct
estimation of speedups and the application of a factorial
design on the analysis of PEA performance. As a case
study, we evaluated the influence of migration related to
parameters on the performance of a parallel evolutionary
algorithm solving two benchmark problems executed on a
multicore processor. We made a particular effort in care-
fully applying the statistical concepts in the development
of our analysis.

The performance and the factor effects were not the
same for the two benchmark functions studied in this
work. The Rastrigin function presented higher coefficient
of variation than the Rosenbrock function, and the factor
and interaction effects on the speedup of the PGA-I were
different in both.

Further work will be done on the high variability
of the results yielded by the algorithms tested. We
observed extreme values in the execution times of PGA-I
when solving the Rastrigin function, in the ‘Rastrigin
function - 27 factorial design’ subsection. These extreme
measures were investigated, and they could be reproduced
by applying the same seed.

We intend to study alternative approaches to deal with
extreme values. One approach is to perform a rank trans-
formation [47]. Another option is to block the PRNG
seed to isolate its influence on the variability of execution
times. Blocking the seed is a controversial subject: it is a
statistically sound approach, but it is not a common prac-
tice to specify the seed that is used in the execution of EAs.
EAs are usually executed several times with different seeds
to get a sense of the robustness of the procedure. The seed
effects may be of little relevance to the EA community.
Future works demand a proper investigation of this issue.

Endnotes

2The population size is one of the investigated factors
with two levels: 1,600 and 3,200 individuals. It is
important to ensure the same workload conditions for
both sequential and parallel times. Thus, it is necessary
to capture the sequential times for these two population
sizes and to have the same population size for the
sequential and the parallel times in the speedup ratio.

b The sparsity of the effect principle states that a system
is usually dominated by main effects and low-order
interactions, and most high-order interactions are
negligible [25].
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