Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

® Journal of
the Brazilian Computer Society

a SpringerOpen Journal

RESEARCH Open Access

Testing the robustness of controllers for
self-adaptive systems

Javier Cdmara'", Rogério de Lemos®3, Nuno Laranjeiro®, Rafael Ventura® and Marco Vieira*

Abstract

Self-adaptive systems are software-intensive systems endowed with the ability to respond to a variety of changes that
may occur in their environment, goals, or the system itself by adapting their structure and behaviour at run-time in an
autonomous way. Controllers are complex components incorporated in self-adaptive systems, which are crucial to
their function since they are in charge of adapting the target system by executing actions through effectors, based on
information monitored by probes. However, although controllers are becoming critical in many application domains,

Znn.com case study.

so far very little has been done to assess their robustness. In this paper, we propose an approach for evaluating the
robustness of controllers for self-adaptive software systems, aiming to identify faults in their design. Our proposal
considers the stateful nature of the controller and identifies a set of robustness tests, which includes the provision of
mutated inputs to the interfaces between the controller and the target system (i.e. probes). The feasibility of the
approach is evaluated on Rainbow, a framework for architecture-based self-adaptation, and in the context of the

Keywords: Robustness testing; Controller; Self-adaptive system; Autonomic system

Introduction

One of the main traits of a self-adaptive software sys-
tem, compared to any other kind of system, is its abil-
ity to deliver its services in spite of changes that may
occur in the system, its environment, or even in its
goals. A key component that enables self-adaptive systems
to handle changes at run-time (e.g. repairing anoma-
lies and improving operation) is a controller that relies
on a feedback control loop for managing adaptations [1]
by executing actions through system-level effectors on
the target system, based on information monitored by
probes. In the context of complex software systems, these
controllers typically implement the traditional sense-plan-
act architectures. An example of such controllers is the
MAPE-K model, which includes four distinct operational
stages, namely monitoring, analysis, planning, and execu-
tion [2]. Despite major achievements in the area, exist-
ing approaches in autonomic systems and self-adaptation
do not systematically address the need to determine if
a self-adaptive system can deliver a service that can

*Correspondence: jcmoreno@cs.cmu.edu
]Camegie Mellon University, Pittsburgh, PA, USA
Full list of author information is available at the end of the article

@ Springer

justifiably be trusted when facing changes (i.e. that it will
be resilient [3]). This lack of assurances is an issue that has
hampered the widespread adoption of self-adaptive sys-
tems, which are often regarded as unreliable by industry. A
major problem associated with the provision of evidence
is the combinatorial nature of the stateful aspects of a con-
troller and the changes that may affect the system being
controlled. Since the different operational stages in the
feedback control loop should be functionally independent
from each other, a change might have a different impact
on the controller depending on the state of the controller.
Moreover, if the controller is expected to act upon a
change when it occurs, there is a wide range of issues
that needs to be considered when producing the appro-
priate action, including the place in which the change has
occurred, the type and the frequency of the change, and
whether it can be anticipated [4]. These factors have to
be considered regarding the provision of assurances about
the services to be delivered by the target system. Hence,
novel techniques need to be devised in order to uncover
potential faults in the controller.

The present paper describes an approach for evaluat-
ing the robustness of controllers for self-adaptive systems
by abstracting away, in a first instance, from the state of

© 2014 Camara et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto:jcmoreno@cs.cmu.edu
http://creativecommons.org/licenses/by/2.0

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

the target system being controlled. The rationale behind
this is the fact that the complexity associated with these
controllers is such that we need first to devise novel
means for evaluating the core logic that enables adap-
tation, before exploring the ensemble target system plus
controller. Moreover, if the robustness evaluation is per-
formed on the ensemble, some of the controller faults
could be masked by the target system, or their effects upon
the system could be more difficult to analyze. Hence, the
decision to define an approach can be used in the robust-
ness evaluation of different controllers, assuming that the
core logic of the different operational stages is basically
the same on the different controllers [5]. In such a way, we
restrict the robustness tests in our approach to the inputs
of the controller, which are characterized by the probes.
Although the proposed approach abstracts away from the
target system, we need to consider the stateful aspects of
the controller, which are related to its different operational
stages.

The primary contribution of this paper is the defi-
nition of an approach for evaluating the robustness of
controllers, which is part of a bigger initiative that is look-
ing into the resilience evaluation of self-adaptive systems.
Our proposal considers the stateful nature of the con-
troller by defining how the controller interface should be
tested according to a target system changeload [6,7], and
the operational stage of the controller. To achieve our
goal, the approach defines a set of mutation rules that
should be applied to the inputs of the controller, a tai-
lored version of a classification of the different controller
failure modes, and an experimental setup and testing
procedure that is specific to self-adaptive systems. A pre-
liminary evaluation [8] of the feasibility of our approach
was carried out using the Rainbow framework, which
consists of a controller that supports architecture-based
self-adaptation [5], and in the context of a simplified ver-
sion of the Znn.com case study [9]. Experimentation using
Rainbow is very convenient, since its software has been
widely available, its structure facilitates access to its inter-
nal components, its design is amenable to the injection
of faults, and the logs Rainbow produces are suitable
for analyzing the effects of the injected faults upon the
controller.

The present paper extends our preliminary study by
reporting on an exhaustive evaluation of the approach on
a full-fledged deployment of Rainbow/Znn.com, includ-
ing extensive tests carried out on a comprehensive set of
probes implemented using different technologies.

The rest of this paper is structured as follows. The
‘Background and related work’ section provides some
background on self-adaptive systems and related work
in the area of robustness testing. The ‘Case study’
section introduces the Znn.com case study, which is
used throughout the paper for illustrating the proposed

Page 2 of 14

approach. The ‘Methods’ section describes our approach
that is focused specifically on evaluating the robustness
of controllers for self-adaptive systems. The ‘Experimen-
tal evaluation’ section presents the experimental results
obtained from the evaluation of our approach. Finally, the
‘Conclusions’ section concludes the paper and indicates
future research directions.

Background and related work

The run-time management of increasingly complex
software-intensive systems has become a central concern
in Software Engineering over the last few years [10,11].
Specifically, a major issue in the area concerns achieving
conformance to functional and non-functional require-
ments in a dependable and cost-effective manner despite
the influence of changes that may affect the system, its
environment, and system goals.

One of the seminal works addressing this concern
was IBM’s autonomic computing initiative [2], which
introduced a layer implementing what is known as the
MAPE-K control loop to monitor, analyze, plan, and exe-
cute adaptation (with a knowledge base that supports
the different activities in the control loop) for the pur-
pose of managing a target system. In particular, some
successful approaches that rely on this closed-loop con-
trol paradigm for self-adaptation exploit architectural
models for high-level reasoning about the target system
under management [5,12]. In particular, Rainbow [5] is
a framework which provides a base of reusable infras-
tructure that can be applied to a wide range of systems
through customization. The framework defined by Rain-
bow includes mechanisms for monitoring a target system
and its environment (using the observations for updating
the architectural model of the target system), detecting
opportunities for improving the system’s quality of ser-
vices (QoS), and deciding the best course of adaptation
based on the state of the system. The “Testing procedure’
section provides further details about the Rainbow frame-
work, which is used for the experimental validation of our
approach.

Resilience evaluation in self-adaptive systems
Despite the fact that research in the field of autonomic and
self-adaptive systems is relatively new, there are already
some contributions regarding their provision of assur-
ances. However, the applicability of these contributions
has been focused on the ensemble target system plus con-
troller. To the best of our knowledge, no approaches have
been proposed regarding the evaluation of controllers,
although there is already some ground work that put
forward the need to follow this direction [10,11].

One of the areas that are related to that of resilience
evaluation is that of resilience benchmarking, which
encompasses techniques from previous efforts in perfor-

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

mance benchmarking [13], dependability benchmarking
[14], and security benchmarking [15], due to its inher-
ent relation to performance, dependability and security.
Compared to established benchmarks, a resilience bench-
mark may be specified following the same basic approach,
but comprising a wide-ranging changeload (which will
include, but will be not limited to, faults), as well as
resilience metrics [6].

Other approaches deal with resilience evaluation
through quantitative analysis using probabilistic model
checking [16], considering the system environment as the
only source of change and leaving out changes that are
internal to the system. The cited approaches quantita-
tively measure resilience in the self-adaptive system when
facing changes either internal or external to the system.
However, they do not deal with an additional source of
problems from the perspective of resilience, which are
robustness issues addressed by the techniques presented
in the current paper.

Robustness testing

Robustness testing consists in stimulating a system with
erroneous input conditions with the goal of triggering
internal errors. This allows testers to differentiate systems
according to the number and type of errors uncovered and
provides developers with information to solve or wrap the
identified problems [17].

Ballista [18] uses a set of tests that combine accept-
able and exceptional values on calls to kernel functions
of operating systems. The parameter values used in each
invocation are randomly extracted from a set of prede-
fined tests and for each parameter a set of values of a
certain data type is associated. Each operating system is
classified in terms of its robustness and according to a pre-
defined scale (the CRASH scale [18]) that distinguishes
several failure modes.

Initially, Ballista was developed for POSIX APIs (includ-
ing real-time extensions). Further work has been devel-
oped to adapt it to Windows operating systems [19]. In
that study, the authors present the results of executing
Ballista-generated exception handling tests over several
functions and system calls in Windows 95, 98, CE, NT,
2000, and Linux. The authors were able to trigger system
crashes in Windows 95, 98, and CE. The other systems
also revealed robustness problems, but not complete sys-
tem crashes.

MAFALDA (Microkernel Assessment by Fault Injection
Analysis and Design Aid [20] is a tool that enables the
characterisation of the behaviour of microkernels in the
presence of faults. Fault injection is performed at two
levels: in the parameters of system calls and in the mem-
ory segments holding the target microkernel. However,
only the former is relevant when the goal is robustness
testing.

Page 3 of 14

The robustness testing techniques have been applied
not only at the operating system level but also at the mid-
dleware layer and targeting different types of systems.
The problem of robustness testing of high availability
middleware is discussed in [21]. The paper presents a
testing framework that integrates previous testing tech-
niques (e.g. scenario-based testing and test result clas-
sification). The case study conducted on OpenAlIS (an
open implementation of the Application Interface Speci-
fication (AIS) provided by the Service Availability Forum)
showed that simple techniques can identify robustness
problems. However, the implementation of more complex
techniques is required since these are able to find faults
not detected by the simple ones.

Ballista was also adapted to be applied to middleware
systems. In particular, the authors in [22] studied the
robustness of various CORBA ORB implementations. In
this case, the failure modes were adapted to better char-
acterize the CORBA context, and the authors were able to
reveal several issues in the middleware being tested.

In [23], we propose an experimental approach for the
robustness evaluation of J]MS middleware. The technique
is applied successfully to three major JMS middleware
providers exposing serious robustness problems, includ-
ing severe security issues, which also highlights the impor-
tance of the application of robustness testing to real-world
systems.

The abovementioned works implement robustness test-
ing approaches that do not consider the state of the
system under test. In [24], the impact of state on robust-
ness testing of a safety-critical operating system (OS) is
investigated by including the OS state in test cases def-
inition. Although system-specific, results show that the
state can play an important role in testing since they are
able to cover more cases when compared to the traditional
approaches.

An approach for robustness testing method of state-
ful Web services, modelled with Symbolic Transition
Systems, is presented in [25]. A test case generation
method is proposed using unusual values and replace-
ment and additions of operation names. States are trans-
versed using different operations and starting from a
system specification which, depending on the system
being tested, may not always be available. The authors
assume that messages sent and received are only SOAP
messages and suggest that a Web service could be con-
sidered as a grey box from which any type of mes-
sage could be observed, increasing the potential of the
technique.

In [8], we present an approach to evaluate the robust-
ness of controllers for self-adaptive software systems, aim-
ing at the identification of design faults. The approach is
based on a set of robustness tests that include the pro-
vision of mutated inputs to the interfaces between the

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

controller and the target system (i.e. probes). The feasibil-
ity of the approach is evaluated in the context of Znn.com,
a case study implemented using the Rainbow framework
for architecture-based self-adaptation.

Case study

To illustrate our approach for robustness testing, we use
the Znn.com case study [9], which is implemented using
Rainbow, and is able to reproduce the typical infrastruc-
ture for a news website. It has a three-tier architecture
consisting of a set of servers that provide contents from
back-end databases to clients via front-end presentation
logic. Architecturally, it is a web-based client-server sys-
tem that satisfies an N-tier style, as illustrated in Figure 1.
The system uses a load balancer to balance requests across
a pool of replicated servers, the size of which can be
adjusted according to service demand. A set of client pro-
cesses makes stateless requests, and the servers deliver the
requested contents (i.e. text, images and videos).

The main objective for Znn.com is to provide content
to customers within a reasonable response time while
keeping the cost of the server pool within a certain oper-
ating budget. It is considered that from time to time, due
to highly popular events, Znn.com experiences spikes in
requests that it cannot serve adequately, even at maxi-
mum pool size. To prevent losing customers, the system
can provide minimal textual contents during such peak
times, instead of not providing service to some of its cus-
tomers. Concretely, there are two main quality objectives
for the self-adaptation of the system: (1) performance,
which depends on request response time, server load,
and network bandwidth, and (2) cost, associated to the
number of active servers.

In the case of Znn.com, Rainbow is capable of analysing
trade-offs among the different objectives and executes dif-
ferent adaptations according to the particular run-time
conditions of the system. For instance, when response
time becomes too high, the system should increment
server pool size if it is within budget to improve its perfor-
mance; otherwise, servers should be switched to textual

c0
_J \
cl — Ibproxy?{J ------
\] it P it o
e 3 s2
- ;
J
2 — O.,,_\ e
o s3
Figure 1 Znn.com system architecture.

Page 4 of 14

mode (start serving minimal text content) if cost is near
budget limit.

Methods

Our approach for robustness evaluation of controllers
in a self-adaptive software system considers the model
depicted in Figure 2. The environment consists of all
non-controllable elements that determine the operating
conditions of the system (e.g. hardware, network, physical
context, etc.). Regarding the system itself, we distinguish
two main subsystems: a target system, which interacts with
the environment by monitoring relevant variables asso-
ciated with operating conditions, and a controller that
manages the target system, driving adaptation whenever it
is required. Concretely, the controller carries out its func-
tion by (1) monitoring the target system and its environ-
ment by means of probes that provide information about
the value of relevant variables, (2) deciding if the current
state of the target system and environment demands adap-
tation, and if this is the case, (3) applying a sequence of
control actions through system-level effectors.

In this work, we focus exclusively on the robustness
of the controller, i.e. we modify the probes’ inputs into
the controller with the intent of evaluating how robust is
the controller regarding changes that may affect its inter-
face when exceptional input is provided. The controller is
considered as a stateful entity, regarding evaluation pur-
poses, since for the same input, the controller’s internal
state may influence its output. In order to tackle this issue,
we consider input mutation during the different operation
stages of the controller® to create an appropriate context
for evaluating its robustness.

The key elements of our approach are as follows:
changeload, which is a set of representative change sce-
narios, where changes are based on controller input

Self-Adaptive Software System

[Controller]

Adapt

Monitor

Target System

Monitor

Affect Monitor

Environment
Non-controllable software, hardware,
network, physical context

Figure 2 Self-adaptive software system.

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

mutations; failure mode classification, that characterizes
the run-time behaviour of the controller while the target
system is running in the presence of the changeload; and
robustness tests, the mutation rules that are applied to the
input probes into the controller.

In the following, in addition of describing the key ele-
ments of our approach, we also present how robustness
tests are performed at the controller interface by mutat-
ing the inputs provided by the probes. To exemplify the
principles of our approach, we have instantiated it into
Rainbow [5].

Changeload model

This section describes the proposed model for the
changeload, presenting the definitions adopted for
the fundamental concepts that form the basis of its
structure.

Definition 1 (Change type). A change type is a tuple
(src, m, A) that characterizes a change, where

e src identifies the source probe type where a mutation
rule is applied.

e m identifies the mutation rule applied on probe
input.

® A= (ay,...,a,) (possibly empty) is a vector of
attributes that holds specific information about the
mutation rule.

Example 1. In Znn.com, consider the change ‘Set an
invalid timestamp date on a response time probe (type
ClientProxyProbeT)’. A possible change type definition for this
would be

invalidDateCPP_CT= (ClientProxyProbeT, TSInvalidDate, (date))

Definition 2 (Change). Given a set of change types CT,
a change is a tuple (ct, srcinst, Vy, ti,d) that corresponds
to an instantiation of a change type, where

® ct = (src,m,A) € CT determines the change type to
be instanced as a change.

e srcinst is the probe instance that is the source of
change (i.e. in which the input is mutated).

® V4= (Va1,...,Van) is a vector of attribute values
instantiating the attributes in A.

® tiec R(J{ determines the time instant in which the
change is triggered.

e d ¢ R7 is the duration associated with the change.

It is worth observing that while some specific changes
may be transient, impacting the controller’s input dur-
ing a particular amount of time, in the definition above,
duration can be considered equal to oo if the change is
permanent.

Page 5 of 14

Example 2. If we consider the change type described in
Example 1, a possible instantiation of it could be

(invalidDateCPP_CT, ClientProxyProbe1, ('2/29/1985'), 10, 2)

The systematic identification and classification of
change types is fundamental to support the definition
of change scenarios, which is discussed in the next
paragraphs.

The main base concept in our changeload model is the
scenario. A scenario is a postulated sequence of events
that captures the state of the system and its environment,
system goals®, and changes affecting all the aforemen-
tioned elements. It is defined in terms of state (system and
environment) and changes applied to that state.

Definition 3 (Scenario). A scenario is a tuple (wl, oc, C),
where

e wl represents the workload, that is, the amount and
type of work assigned to the system (not necessarily
static).

® oc are the operational conditions of the system
(including software and hardware resources needed
for the system to perform its service).

e (isa set of changes applied to controller input in the
presence of the workload and operational conditions.

Based on the definition above, a change scenario is one
which includes a non-empty set of changes (C # ¢).

Definition 4 (Changeload). A changeload is a set of
change scenarios.

Controller failure modes

The robustness of a controller for a self-adaptive sys-
tem can be classified according to an adapted version of
the CRASH scale [18], which distinguishes the following
failure modes:

1. Catastrophic: the whole controller crashes or
becomes corrupted (this might include the OS or
machine on which the controller is running). No
output is produced.

2. Restart: the controller execution hangs and may not
issue any output commands, or send always the same
command, within the worst case execution time
associated with the adaptation cycle. The controller
needs to be externally re-booted.

3. Abort: abnormal behaviour in the controller occurs
due to an exception raised at run-time inside of the
controller.

4. Silent: the controller fails to acknowledge an error,
for instance by signalling an exception, which causes
the controller to continue operating improperly.

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

5. Hindering: the controller fails to return a correct
error code, which may hinder error recovery. The
difference between a silent failure and this case is
that, here, an error is acknowledged by the controller
but the returned error code is incorrect.

In particular, it is worth observing that the tailored ver-
sion of the CRASH scale for controllers in self-adaptive
software systems includes a specific adaptation which is
related with time (2).

Robustness tests

The basis of the proposed approach for evaluating the
robustness of controllers for self-adaptive software sys-
tems relies on stimulating the interface of the controller,
which consists of probes that monitor both the target
system and its environment (see Figure 2). For evaluat-
ing how robust is the controller, regarding changes that
may affect its interface, the probes’ inputs into the con-
troller are modified according to a comprehensive set of
mutation rules. Moreover, since the inputs of these probes
may affect the different stages of a MAPE-K control loop,
the evaluation needs to consider the controller as state-
ful. Although for evaluating the robustness of a controller
we are able to abstract away from the application (target
system), we nevertheless use the application to drive the
evaluation.

Mutation rules

The set of robustness tests performed is automatically
generated by applying a set of predefined mutation rules
to the messages sent by probes, which characterizes
the monitoring stage of the controller. Although con-
crete message formats and additional elements may exist
depending on the case, the basic input supplied by probes
to the controller typically consists of three basic elements:
(1) an identifier of the variable being monitored, (2) the
actual value for the variable, and (3) a timestamp that pro-
vides a temporal context for the variable being monitored.
For example, in the case of Rainbow, the kind of input
received by the controller consists of simple messages
encoded as text strings with the following format:

[timestamp] variable name : variable value

Based on this general description of probe input, we
propose a set of rules (Table 1), which have been defined
based on previous works on robustness testing [18,20,26],
and explore limit conditions that are typically the source
of robustness problems.

Probe usage categories

The effect of applying mutation rules on the outputs gen-
erated by the probes may manifest in different ways (or
not manifest at all) in the controller, depending on its

Page 6 of 14

internal state. This results from the stateful nature of the
controller, which may use different inputs and in a dif-
ferent way, depending on its operation stage (i.e. analysis,
planning, or execution). Changes in the internal operation
stage of the controller are also induced by input obtained
from probes.

Table 2 distinguishes different probe categories, accord-
ing to their use in the different operation stages of the
controller. Different robustness issues may arise in the
controller, depending on the particular stage/probe in
which mutation rules are applied, even if the set of muta-
tion rules applied are the same. The same probe can
belong to different usage categories and be used during
different stages in the controller. We consider the con-
troller to be a gray box, while its different operation stages
are black boxes on which probe mutation is applied. For
the time being, we assume that each of these black boxes
are stateless, even if that is not the case as far as the target
system is concerned. The different stages in the controller
are sequential, while monitoring is transversal to all of
them.

Testing procedure

As discussed previously, inputs to the Rainbow controller
are delivered with the use of probes, which provide impor-
tant system and environment information such as expe-
rienced response time, network latency, or server load.
Robustness testing focuses on the controller’s input points
(i.e. the probe information). Therefore, a complete robust-
ness experiment must include a set of tests that focuses
precisely on the information provided by each of the input
probes.

Figure 3 represents the complete experimental proce-
dure and, as we can see in the figure, each experiment
includes several tests, each one focusing on a given probe.
For each probe (which, at run-time, is continuously deliv-
ering information to the controller under test), we apply
a single change for each probe data sample. However, we
apply (in the subsequent probe data samples) the same
change for a given period of time, which potentially gives
us the possibility of further disturbing the system under
test.

Each robustness test focuses on a single mutation rule
type, and having identified the three major controller
operational stages (analysis, planning, and execution), we
must execute the tests with the controller in each of these
stages, as it allows us to cover more cases and potentially
disclose more robustness problems. Therefore, in each
test, we must drive the system from an initial state to a
target state by submitting the system to a workload (i.e.
changeload) for a given amount of time (ramp-up period
in Figure 3). This target state is the one in which the sys-
tem should be in order to start testing and can correspond
to any entry point to any of the three controller stages

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

Table 1 Mutation rules for probes

Page 7 of 14

Type Rule name Description
A. Message 1. MsgNull Replace by null value
2. MsgEmpty Replace by empty string
3. MsgPredefined Replace by predefined string
4. MsgNonPrintable Replace by string with non-printable characters
5. MsgAddNonPrintable Add non-printable characters to the string
6. MsgOverflow Add characters to overflow max string size
B. Timestamp 1. TSEmpty Replace by empty timestamp
2. TSRemove Remove timestamp from response

3. TSInvalidFormat

4. TSDateMaxRange
5.TSDateMinRange

6. TSDateMaxRangePlusOne
7.TSDateMinRangeMinusOne
8. TSDateAdd100

9. TSDateSubtract100

10. TSInvalidDate
1.VNRemove

2.VNSwap

3. VNSwapType

4. VNInvalidFormat

5. VNNotExist

C. Variable name

D. Variable value 1. VWRemove

2. WinvalidFormat

3. WNumAbsoluteMinusOne
4. WNumAbsoluteOne

5. VWWNumAbsoluteZero

6. VWNumAddOne
7.VWWNumSubtractOne

8. WWNumMax

9. WNumMin

10. WNumMaxPlusOne

11. WNumMinMinusOne

12. WWNumMaxRange

13. WNumMinRange

14. WWNumMaxRangePlusOne
15. WNumMinRangeMinusOne
16. VWBoolPredefined

Replace by timestamp with invalid format

Replace date in timestamp by maximum valid

Replace date in timestamp by minimum valid

Replace date in timestamp by maximum valid plus one
Replace date in timestamp by minimum valid minus one
Add 100 years to date in timestamp

Subtract 100 years from date in timestamp

Replace date in timestamp by invalid date (e.g. February 29, 1985)
Remove variable name

Replace by different valid variable name of same type
Replace by different valid variable name of different type
Replace by variable name with invalid format

Replace by non-existing variable name

Remove variable value

Replace value by one with invalid format

Replace by —1°

Replace by 1@

Replace by 0°

Add 1@

Subtract 14

Replace by maximum number valid for type

Replace by minimum number valid for type

Replace by maximum number valid for type plus one
Replace by minimum number valid for type minus one
Replace by maximum number valid for variable

Replace by minimum number valid for variable

Replace by maximum number valid for variable plus one
Replace by minimum number valid for variable minus one

Replace by predefined valueP

aNumber; PBoolean.

previously mentioned. With the controller in the target
state, we can start applying the changes (of the same type)
specified within the changeload during a change period
(see Figure 3) and while the controller is on the target
state. This period of time should be set to the typical
time required to transition from the target controller state

for the test to the next state. After this probe mutation,
there is a keep time period which is the time required for
the system to reach a final state, which marks the end
of the current test, and corresponds to the completion of
the controller’s execution stage. At most, the keep period
should be set to the worst case execution duration found

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

Table 2 Probe categories

Page 8 of 14

Probe usage category Controller stage

Input usage

Example Rainbow/Znn.com

Analysis The controller analyzes the current state

of the target system for detecting anomalies
and triggering adaptation if needed
Planning The controller determines if any adaptation
plans can be applied to the system and
selects the best alternative

Execution The controller executes the selected

course of action

Anomaly detection

Adaptation plan

selection

Control action

selection

Rainbow checks whether the current response time
(through response time probes) in Znn.com is above
the maximum acceptable response time threshold

If the maximum response time is above threshold,
Rainbow detects anomaly and determines the best
adaptation strategy (based on response time and
server fidelity probes)

Rainbow executes the selected adaptation strategy
for reducing response time (monitors response time,

server fidelity, and server load probes)

in the adaptation strategies’ specification. The observation
period is composed by the change period and the keep
time and is used to register any potential deviations from
expected controller behaviour.

Experimental evaluation

The aim of our experiments is to assess the validity of
our approach to evaluate controller robustness in self-
adaptive systems. In particular, we evaluate the robustness
of Rainbow’s controller (i.e. Rainbow master) on an imple-
mentation of the Znn.com case study described in the
‘Case study’ section.

The Rainbow framework

In this paper, we focus on Rainbow [5], an architecture-
based platform for self-adaptation, which provides a
substantial base of reusable infrastructure through cus-
tomization, which aims to reduce the cost of self-adaptive
system development. Rainbow has distinctive features: an

Complete experiment

Probe 0 |, Probe1 Probe 2 Probe 3

| | | | | | |
\ | \ \ | | \

| Change0 | Changel | Change2 J | Change m ‘

\ \ \ \ I \
Initial Target o Final
state state state

I
Ramp-up Change Keep
period period time

Observation period

Figure 3 Robustness testing procedure.

explicit architecture model of the target system, a col-
lection of adaptation strategies, and utility preferences to
guide adaptation.

The framework defined by Rainbow includes mech-
anisms for (Figure 4): monitoring a target system and
its environment (using the observations for updating
the architectural model of the target system), detecting
opportunities for improving the system’s QoS, decid-
ing the best course of adaptation based on the state
of the system, and effecting the most appropriate
changes.

Rainbow’s component-and-connector architectural
model of the target system is one of the main ele-
ments used in its decision-making process, using it to
update monitored system information and reason about
appropriate adaptation mechanisms for a particular
situation.

The main components of the framework are as follows:

® Architecture evaluator: It evaluates the model upon
update to ensure that the system is operating within
an acceptable range. If the evaluator determines that
the system is not operating within the accepted
range, it triggers the adaptation.

e Adaptation manager: It chooses a suitable strategy
based on the current state of the system (reflected in
the architectural model).

e Strategy executor: It executes the strategy chosen by
the adaptation manager on the running system via
system-level effectors.

® Model manager: It updates the architecture model
using the information observed in the system via
probes.

Experimental setup

For our experimental setup, we deployed Rainbow and the
corresponding implementation of Znn.com across seven
different machines (Figure 5): znnso-3 are the four content
servers running Apache v2.2.16, znndb is a common backend

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

Page9of 14

Architecture Layer
Adaptation

Strategy PR Manager Architecture
Executor <00 (Plan) 0 Evaluator
(Execute) — (Analyze)

-
H Model Manager
(Analyze, Plan, Execute)
ﬁ =
Translation
] Infrastructure | | ..
i Effectors System API Probes | |
; ””””””” S — i
i o i
i System Target System *
Layer E
Figure 4 The Rainbow framework.

database running mySql v14.14d5.1.61, from which the differ-
ent servers extract the contents, and znnproxy is the proxy
machine that runs the load balancing software (Apache run-
ning mod_proxy_balancer v2.1). The controller is deployed in a
separate machine (znnmaster). All machines run Debian Linux
v6.04 and have 512 MB of memory. Moreover, an addi-
tional machine znnclient running JMeter v2.5.1 generates the
traffic during the execution of the system.

To build the changeload used for our experiments, we
identified the following:

1. Workload and operating conditions for our change
scenarios, which is characteristic of a slashdot-type
effect, based on a sample collected by Juric [27],
previously used for a general evaluation of the
effectiveness of Rainbow in Znn.com [9]. In this case,

scenarios have been scaled down to a duration of

5 min, which is enough to drive the controller
through its different operational stages and apply the
robustness tests.

Sets of probes for the different controller operational
stages. The three last columns of Table 3 indicate the
set of probes used during the analysis, planning, and
execution stages of the controller. This information
was identified by inspecting the specification of
architecture models and adaptation strategies.
Specifically, the use of a probe during the analysis
stage can be determined by checking whether the
constraints specified for the architecture model are
defined over variables updated by a given probe.
Moreover, an analogous process can be followed to
identify probes used during the planning stage, which

ServerFidelityProbe
ServerLoadProbe

znnmaster

znnproxy

ClientProxyProbe

znnclient

Figure 5 Znn.com experimental setup.

[]
A lznns1

znns2

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

Page 10 of 14

Table 3 Probe use per controller stage and applicable mutation rules for Znn.com

Probe type Description Non-applicable mutationrules Analysis Planning Execution
ClientProxyProbeT Measures experienced response time in proxy A6,D12,D14,D16 X X X
ServerLoadProbeT Measures the load of a given server A1, A6, D3-D16 X X
ServerFidelityProbeT Reports the fidelity level of the contents A1, A6,D16 X X

served from a given server

update information in variables used to specify
applicability conditions of adaptation strategies.
Finally, probes used during execution are identified
by inspecting the predicates included in the code of
the adaptation strategy itself.

3. Set of changes to be applied on our set of probes.
Table 3 also indicates the set of non-applicable
mutation rules to each of the probes, which are
determined by the type of probe implemented, as
well as the data type and value range of the variables
they update. Regarding probe implementation type,
probes ServerLoadProbeT and ServerFidelityProbeT are
implemented in Perl, whereas the ClientProxyProbeT is
implemented in Java. In both cases, the length of
strings is unrestrained, therefore mutation rule
MsgOverflow (A6) is not applicable to any of the probes.
In the particular case of Perl probes, the null data type
does not exist, disallowing the applicability of
mutation MsgNull (A1). Regarding data types, all of the
studied probes update numerical variables,
disallowing the applicability of mutation rule
VBoolPredefined (D16). The only exception is the
ServerLoadProbeT, which is not associated with a simple
data type and reports a message with a custom
format in the variable value, therefore preventing the
use of mutation rules D3 to D16. Finally, the
variables updated by some of the probes do not have
a value range explicitly defined. In the case of probe
ClientProxyProbeT there is an implicit lower bound of
zero, due to the semantics of the information
contained in the variable (e.g. negative times would
make no sense), but there is no upper bound,
discarding the use of rules D12 and D14 that involve
the maximum value range.

Results and Discussion

Each change scenario of the changeload results from
combining the workload and operating conditions with
a single change type based on an applicable mutation
rule. In our changeload, each mutation rule gives way
to up to three change scenarios (i.e. applied during the
analysis, planning, and execution stages, respectively),
which are triggered at the time instant in which the
controller enters the corresponding stage, and their dura-
tion is permanent. Overall, we run 209 robustness tests

using our experimental setup (33 x 3 applicable muta-
tion rules for ClientProxyProbeT, 21 x 2 applicable mutation
rules for ServerLoadT, 34 x 2 applicable mutation rules for
ServerFideIityProbeT,).

Table 4 details the experimental results obtained from
the tests that apply the change scenarios based on each
of the identified applicable mutation rules at each one
of the controller stages. To begin with, 108 out of the
209 conducted tests uncovered robustness issues (51.6%).
Moreover, one of the first observations that can be made
is that no catastrophic, restart, nor hindering failures were
identified during the tests. Although these types of fail-
ures have not been identified during our tests, these are
still needed since they portray relevant behaviours of the
controller. Specifically, only 2.7% of the issues uncov-
ered correspond to abort failures, which only occur on
tests based on the mutation MsgNull (in this case, in the
ClientProxyProbeT probe type, which is the only one imple-
mented in Java). Specifically, this abort case consists of
the same java.lang.NullPointerException, which is unhandled in
each of the three stages of the controller during the pars-
ing of probe response with a regular expression matcher.
It is worth mentioning that additional unhandled excep-
tions have been detected during the course of the exper-
iments. However, these have not been considered in the
results table since they have been originated outside of
the controller (concretely, on the response time probe
itself).

Silent failures are by far the most frequent failure type
discovered during the tests (97.3%). These mostly cor-
respond to incorrect updates (or the lack thereof) of
property values in the architecture model of the target
system, which are not acknowledged by the controller.
In the case of the probes implemented in Perl (Server-
LoadProbeT and ServerFidelityProbeT), when incorrect input is
received by the controller, the update is ignored in all
cases, and the property in the model is not updated. In
contrast, in the Java probe (ClientProxyProbeT), properties
are updated with clearly incorrect values (such as nega-
tive values in the case of the ClientProxyProbeT with muta-
tions VWNumAbsoluteMinusOne or VWNumMin) or not updated
in some other cases (e.g. mutations MsgNonPrintable or
VNRemove).

As it can be observed, mutations that pertain the over-
all probe response message and the variable value (first

Table 4 Robustness issues uncovered by the experiments

Failures
Analysis Planning Execution
ClientProxyProbeT ServerLoadProbeT ClientProxyProbeT ServerFidelityProbeT ClientProxyProbeT ServerFidelityProbeT ServerLoadProbeT
A S A S A S A S A S A S A S
Mutation rule
MsgNull 1 1 1 1 1 1 1
MsgEmpty 1 1 1 1 1 1 1
MsgPredefined 1 1 1 1 1 1 1
MsgNonPrintable 1 1 1 1 1 1 1
MsgAddNonPrintable 1 1 1 1 1 1 1
TSEmpty 1 1 1 1 1 1 1
TSRemove 1 1 1 1 1 1 1
VNRemove 1 1 1 1 1 1 1
VNSwap 1 1 1 1
VNInvalidFormat 1 1 1 1
VNNotExist 1 1 1 1
VWRemove 1 1 1 1 1 1 1
WinvalidFormat 1 1 1 1 1 1 1
VWNumAbsoluteMinusOne 1 1 1 1 1
WNumMax 1 1 1
VWNumMin 1 1 1 1 1
VWNumMaxPlusOne 1 1 1 1 1
WNumMinMinusOne 1 1 1 1 1
VWNumMinRangeMinusOne 1 1 1 1 1
Total/probe 1 16 0 12 1 16 0 18 1 16 0 18 0 12
Total/stage A=15S=28 A=1S=34 A=1S=146

A, abort; S, silent.

1/1/0Z/3USIUOD/W0I'SIG-[eunof-mmm//:dny

1:0Z ‘710 A13120S 491ndwio) ubljiZpig 3Y3 JO [DUINOS *|D J3 eIRWED

v1jo L abeq

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

and fourth group in Table 4, respectively) present the
highest concentration of silent failures. In contrast, muta-
tions that concern timestamps present silent failures only
in cases in which the concrete element is removed (muta-
tions TSEmpty and TSRemove). This is a consequence of the
way in which the Rainbow master processes inputs from
the probes. Messages sent from the probes are parsed
in such a way that only the presence of a timestamp
in the message is assessed, but its concrete value is not
checked syntactically nor semantically. Regarding muta-
tions that affect variable names, the ClientProxyProbeT probe
shows silent failures only in the case in which the variable
name is removed (mutation VNRemove). Again, this happens
because only the presence of a variable name in the mes-
sage coming from the Java probe is assessed, and further
syntactical or semantical checks are not performed on
this part of the message. However, this does not prevent
the correct update of values in the architectural model
of the system inside of the controller in the case of Java
probes, which uses a unique probe identifier to update
the value in the correct place in spite of incorrect variable
names or timestamps in probe input. In contrast, we can
observe that further silent failures occur in the case of Perl
probes with mutations (VNSwap, VNInvalidFormat, and VNNotEx-
ist), since in this case, the variable name in the message is
effectively used to carry out the appropriate update in the
architecture model.

In spite of the similarity of failure patterns across
probes, we have been able to observe that there are
slight differences in them, also directly related with their
type of implementation: (1) all instances of abort failures
are given when mutating the Java probe, and (2) silent
failures when mutating Perl probes always stops the
updates of property values in the architecture model,
in contrast with the Java probe, in which incorrect
updates of values in the architectural model can also
appear.

It is also worth mentioning that in spite of the sim-
ilar failure patterns for the same probe across different
controller stages, the specific failure instances discov-
ered in the different controller stages are different. An
instance of this is the mutation of the Java probe with
the MsgNull, which results in the properties of the archi-
tecture model being updated with null values in tests con-
ducted during the analysis stage. However, in the planning
and execution stages, the last valid value on the model
becomes frozen when the mutation rule is applied on the
probe, and this can lead to completely different effects
when considering the ensemble controller plus target
system.

Summarizing, although in general terms Rainbow mas-
ter is fairly robust, experimental results have shown that
our approach has been able to uncover a relevant set
of robustness issues in the controller. Although in this

Page 12 of 14

particular case the identified pattern of robustness issues
at the different stages of the controller differs only to
a limited extent, this can be attributed to the particu-
lar architecture of Rainbow, which uses its model man-
ager as a safeguard for the logic in the rest of the
components used throughout the different operational
stages. Moreover, the obtained results align with previous
research, which has shown that robustness testing may
disclose a small number of different issues, despite of their
potentially high relevancy to the particular system being
tested [23].

Conclusions

In this paper, we have presented a novel approach for test-
ing the robustness of controllers for self-adaptive software
systems. The approach consists in mutating the inputs
provided by probes to the controller, according to a set of
mutation rules and a target system’s changeload, and tak-
ing into account the stateful nature of the controller. The
proposal also includes an experimental setup and test-
ing procedure specific to self-adaptive systems, as well as
an adapted version of the CRASH failure scale that char-
acterizes the different failure modes of a controller for
self-adaptive software systems. We have evaluated the fea-
sibility of our approach using Rainbow as a controller,
which is based on an architecture-based self-adaptation
framework, and in the context of the Znn.com case study,
which reproduces the typical infrastructure for a news
website.

Our experimental results have shown that the proposed
approach has been able to discover a relevant number
of controller failures that might impact negatively on the
resilience of the self-adaptive system. However, despite the
relevant number of failures uncovered, our approach has
been unable to identify any catastrophic, restart, or hin-
dering failures in the controller. Although this might be
related to the restricted observability of the controller’s
internal behaviour, other factors such as the architectural
robustness of the controller might be a plausible expla-
nation for such results. Indeed, the obtained results align
with previous research on robustness testing, which has
shown that these techniques may disclose a narrow range
of different issues, despite of their potential relevance to
the particular system being tested [23]. Regarding dis-
covered failures, most of them correspond to silent ones
and are distributed in similar patterns across the differ-
ent probes and controller operational stages. However, it
is worth observing that even if the failure categories coin-
cide, the specific issues discovered are different between
probes implemented with different technology, i.e. Java
and Perl. This is also true in some specific cases in which
mutations on the same probe in different operational
stages of the controller result in different kinds of silent
failures.

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

Concerning future work, there are different lines of
research that we intend to exploit based on the ground-
work setup by this paper:

e Employ different controllers and additional case
studies for assessing our approach in terms of its
efficiency in uncovering faults in the controller of a
self-adaptive software system

e While the focus of this paper was the evaluation of
the controller, there is also the need for considering
the self-adaptive system in its entirety, and this would
inevitably lead to new challenges, such as the
necessity to consider the full state of the target
system when evaluating the robustness of the entire
system, i.e. the controller plus the target system

e Develop a framework for resilience evaluation of
self-adaptive software systems based on our
technique for evaluating the robustness of controllers.
This work will be based upon previous work
conducted on resilience evaluation of self-adaptive
software systems [7,16] and will enable us to explore
how robustness issues in the controller can influence
the resilience of the overall self-adaptive system

e Extend our robustness evaluation approach into the
internal components of the controller that
implement the MAPE-K loop. The idea is to test the
interfaces between its components, in contrast with
just focusing on the interface between the controller
and the target system

A long-term goal is to perform the type of evaluation
described in this paper at run-time rather than develop-
ment time since the structure of a self-adaptive software
system is expected to evolve during run-time.

Endnotes

Specifically, during analysis, planning, and execution.
Monitoring is transversal to the rest of the activities in
the MAPE-K loop.

PFor the sake of simplicity, in this paper, we abstract
away from system goals, which are not required to deal
with robustness evaluation of the controller.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements

This research is co-financed by the Foundation for Science and Technology via
project CMU-PT/ELE/0030/2009 and by FEDER via the ‘Programa Operacional
Factores de Competitividade’ of QREN with COMPETE reference:
FCOMP-01-0124-FEDER-012983.

Author details

' Carnegie Mellon University, Pittsburgh, PA, USA. >University of Kent,
Canterbury, Kent, UK. >CISUC, University of Coimbra, Coimbra, Portugal.
4University of Coimbra, Coimbra, Portugal.

Page 13 of 14

Received: 20 June 2013 Accepted: 7 November 2013
Published: 23 January 2014

References

1. BrunY, Serugendo GDM, Gacek C, Giese H, Kienle H, Litoiu M, Muller H,
Pezzé M, Shaw M (2009) Engineering self-adaptive systems through
feedback loops In: Software engineering for self-adaptive systems.
Springer-Verlag, Heidelberg, pp 48-70

2. Kephart JO, Chess DM (2003) The vision of autonomic computing.
Computer 36:41-50

3. Laprie JC (2008) From dependability to resilience In: DSN Fast abstracts.
|IEEE Computer Society

4. Andersson J, de Lemos R, Malek S, Weyns D (2009) Modeling dimensions
of self-adaptive software systems In: Software engineering for
self-adaptive systems. Springer-Verlag, Heidelberg, pp 27-47

5. Garlan D, Cheng SW, Huang AC, Schmerl BR, Steenkiste P (2004) Rainbow:
architecture-based self-adaptation with reusable infrastructure. IEEE
Comput 37(10): 46-54

6. Almeida R, Vieira M (2011) Benchmarking the resilience of self-adaptive
software systems: perspectives and challenges In: 6th international
symposium on software engineering for adaptive and self-managing
systems (SEAMS 2011), Honolulu, 23-24 May 2011, pp 190-195

7. Camara J, de Lemos R, Vieira M, Aimeida R, Ventura R (2013)
Architecture-based resilience evaluation for self-adaptive systems.
Computing. doi:10.1007/500607-013-0311-7

8. Camara J, de Lemos R, Laranjeiro N, Ventura R, Vieira M (2013) Robustness
evaluation of controllers in self-adaptive software systems In: 6th Latin
American symposium on dependable computing (LADC 2013), Rio de
Janeiro, 1-5 Apr 2013, pp 411-420

9. Cheng SW, Garlan D, Schmerl BR (2009) Evaluating the effectiveness of
the rainbow self-adaptive system In: 4th international workshop on
software engineering for adaptive and self-managing systems (SEAMS
2009), Vancouver, 18-19 May 2009, pp 132-141

10. Cheng BH, de Lemos R, Giese H, Inverardi P, Magee J (2009) Software
engineering for self-adaptive systems: a research roadmap. In: Cheng BH,
de Lemos R, Giese H, Inverardi P, Magee J (eds) Software engineering for
self-adaptive systems. Springer-Verlag, Heidelberg, pp 1-26

11. de Lemos R, Giese H, Mller HA, Shaw M, Andersson J, Litoiu M, Schmerl B,
Tamura G, Villegas NM, Vogel T, Weyns D, Baresi L, Becker B, Bencomo N,
Brun 'Y, Cukic B, Desmarais R, Dustdar S, Engels G, Geihs K, Goschka KM,
Gorla A, Grassi V, Inverardi P, Karsai G, Kramer J, Lopes A, Magee J, Malek S,
Mankovskii S, et al. (2012) Software engineering for self-adaptive systems:
a second research roadmap In: Software engineering for self-adaptive
systems Il Dagstuhl Castle 24-29 October 2010. Lecture notes in
computer science, volume 7475. Springer-Verlag, Heidelberg

12. Oreizy P, Gorlick MM, Taylor RN, Heimbigner D, Johnson G, Medvidovic N,
Quilici A, Rosenblum DS, Wolf AL (1999) An architecture-based approach
to self-adaptive software. IEEE Intell Syst 14: 54-62

13. Gray J (1992) Benchmark handbook: for database and transaction
processing systems. Morgan Kaufmann Publishers Inc,, San Francisco

14. Kanoun K, Spainhower L (2008) Dependability benchmarking for
computer systems. Wiley-IEEE Computer Society Press, Hoboken, NJ, USA

15. Vieira M, Madeira H (2005) Towards a security benchmark for database
management systems In: Proceedings of the 2005 International
conference on dependable systems and networks, DSN 05, 28 June-1
July 2005, Yokohama, Japan, pp 592-601

16. Camara J, de Lemos R (2012) Evaluation of resilience in self-adaptive
systems using probabilistic model-checking In: 7th international
symposium on software engineering for adaptive and self-managing
systems (SEAMS 2012), Zurich, 4-5 June 2012, pp 53-62

17. Mukherjee A, Siewiorek D (1997) Measuring software dependability by
robustness benchmarking. Trans Softw Eng 23(6): 366-378

18. Koopman P, DeVale J (1999) Comparing the robustness of POSIX
operating systems In: Proceedings of the 29th annual international
symposium on fault-tolerant computing, FTCS '99, Madison, 15-18 June
1999, p 30

19. Shelton C, Koopman P, DeVale K (2000) Robustness testing of the
microsoft win32 API In: International conference on dependable systems
and networks DSN, New York, June 2000, pp 261-270

20. Rodriguez M, Salles F, Fabre JC, Arlat J (1999) MAFALDA: Microkernel
Assessment by Fault Injection and Design Aid In: Proceedings of the third

Camara et al. Journal of the Brazilian Computer Society 2014, 20:1
http://www.journal-bcs.com/content/20/1/1

European dependable computing conference on dependable
computing, Prague, 15-17 September 1999, pp 143-160

21. Micskei Z, Majzik |, Tam F (2006) Robustness testing techniques for high
availability middleware solutions In: Proceedings of the international
workshop on engineering of fault tolerant systems, Luxembourg, 12-14
June 2006

22. Pan J, Koopman P, Siewiorek DP, Huang Y, Gruber R, Jiang ML (2001)
Robustness testing and hardening of CORBA ORB implementations In:
The 2001 international conference on dependable systems and networks
(DSN 2001), Goteborg, 1-4 July 2001, pp 141-150

23. Laranjeiro N, Vieira M, Madeira H (2008) Experimental robustness
evaluation of JMS middleware In: IEEE international conference on
services computing (SCC 2008), Honolulu, 7-11 July 2008, pp 119-126

24. Cotroneo D, DiLeo D, Natella R, Pietrantuono R (2011) A case study on
state-based robustness testing of an operating system for the avionic
domain In: Computer safety, reliability, and security. Proceedings 30th
international conference, SAFECOMP 2011, Naples, 19-22 Sept 2011
Lecture notes in computer science, vol 6894. Springer, Heidelberg,
pp 213-227

25. Salva S, Rabhi | (2010) Stateful web service robustness In: Fifth
international conference on internet and web applications and services
(ICIw), Barcelona, 9-15 May 2010, pp 167-173

26. Vieira M, Laranjeiro N, Madeira H (2007) Benchmarking the robustness of
web services In: 13th IEEE Pacific Rim Dependable Computing
Conference (PRDC 2007), Melbourne, 17-19 December 2007, pp 322-329

27. Juric M (2004) Slashdotting of mjuric/universe. http://www.astro.
princeton.edu/universe/slashdotting/. Accessed 23 May 2013

doi:10.1186/1678-4804-20-1
Cite this article as: Camara et al.: Testing the robustness of controllers for
self-adaptive systems. Journal of the Brazilian Computer Society 2014 20:1.

Page 14 of 14

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.astro.princeton.edu/universe/slashdotting/
http://www.astro.princeton.edu/universe/slashdotting/

	Abstract
	Keywords

	Introduction
	Background and related work
	Resilience evaluation in self-adaptive systems
	Robustness testing

	Case study
	Methods
	Changeload model
	Controller failure modes
	Robustness tests
	Mutation rules
	Probe usage categories

	Testing procedure

	Experimental evaluation
	The Rainbow framework
	Experimental setup

	Results and Discussion
	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

