
J Braz Comput Soc (2010) 16: 147–162
DOI 10.1007/s13173-010-0009-z

O R I G I NA L PA P E R

Comparative evaluation of static gesture recognition techniques
based on nearest neighbor, neural networks and support vector
machines

Alexandre Savaris · Aldo von Wangenheim

Received: 27 November 2009 / Accepted: 29 April 2010 / Published online: 9 June 2010
© The Brazilian Computer Society 2010

Abstract It is a common behavior for human beings to
use gestures as a means of expression, as a complement to
speaking, or as a self-contained communication mode. In
the field of Human–Computer Interaction, this behavior can
be adopted to build alternative interfaces, aiming to ease the
relationship between the human element and the computa-
tional element. Currently, various gesture recognition tech-
niques are described in the technical literature; however, the
validation studies of these techniques are usually performed
isolatedly, which complicates comparisons between them.
To reduce this gap, this work presents a comparison between
three well-established techniques for static gesture recogni-
tion, using Nearest Neighbor, Neural Networks, and Sup-
port Vector Machines as classifiers. These classifiers evalu-
ate a common dataset, acquired from an instrumented glove,
and generate results for precision and performance mea-
surements. The results obtained show that the classifier im-
plemented as a Support Vector Machine presented the best
generalization, with the highest recognition rate. In terms
of performance, all methods presented evaluation times fast
enough to be used interactively. Finally, this work identifies
and discusses a set of relevant criteria that must be observed
for the training and evaluation steps, and its relation to the
final results.
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1 Introduction

The discipline of Human–Computer Interaction (HCI) ad-
dresses the design, implementation, and evaluation of tech-
niques to build interfaces between the human element and
the computational element [1]. It is a multidisciplinary
study area that involves knowledge from computer science,
psychology, sociology, anthropology, and industrial design,
among other knowledge sources. The combination of these
knowledge sources allows the creation of interactive tech-
niques, which ease the relationship between people (indi-
vidually or collectively) and computers (through hardware
devices and application software).

In the last decades, the study and development of inter-
action techniques have established landmarks that guided
the relationship between man and machine. Among these
landmarks, Myers [2] highlights the following: Graphical
objects (presentation and manipulation), mouse as a point-
ing device, window-based interfaces, text editors, spread-
sheets, computer-aided design software (CAD), hypertext,
and video games. Virtual reality, natural language recogni-
tion and 3D object representation can also be considered the
building blocks for a number of different technologies used
today.

For a long time, interactivity was restricted to the key-
board/mouse pair; all operations performed by users were
mapped to a set of mouse motions or keyboard keys. Cur-
rently, there is a tendency to use more intuitive actions to
perform the same operations. For instance, head movements
can change the field of view in an immersive application,
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and multitouch surfaces [3, 4] can provide input/output, al-
lowing users to interact using their fingertips combined with
hand movements. Also, free gestures can be interpreted and
translated to application events, with few or even no restric-
tions imposed by former input devices [5–7].

The development of gesture-based interfaces presents
a challenge: How to correctly interpret gestures, avoiding
false positive and false negative recognitions? Some ques-
tions surround this challenge, and must be answered dur-
ing the project phase of such interfaces: Is there a technique
suitable for a wide range of gesture vocabularies? Is a given
technique fast enough to be applied in a reasonable time?
How extensive can be the vocabulary, and what are the char-
acteristics of the gestures to be used?

The literature presents different approaches for the inter-
pretation of gestures, but these approaches are generally val-
idated only in a very superficial way, without the presenta-
tion of quantitative data. A systematic, quantitative compar-
ison between different approaches lacks altogether. In this
context, the objective of this work is to answer some of
the questions stated above, systematically comparing a num-
ber of common gesture recognition techniques against each
other and presenting quantitative and reproducible results
in terms of precision and performance. The chosen tech-
niques are largely used in gesture recognition studies, and
were adapted to interpret a set of static hand gestures. As its
main contribution, this work identifies the method that can
be best applied to recognize gestures, like those that make up
the vocabulary used on validation sessions. Besides, in order
to allow the results of this work to be tested against other ap-
proaches or re-validated by other researchers, we made the
instrumented data publicly available.1

The paper is organized as follows: Basic concepts on sta-
tic and dynamic gestures, as well as details about the gesture
recognition process, are presented in Sect. 2. Section 3 lists
related research efforts on measuring the accuracy of tech-
niques for gesture recognition and interpretation. Section 4
describes the experimental environment and Sect. 5 presents
the obtained results. Finally, Section 6 presents a discussion
about the obtained results and Sect. 7 highlights the conclu-
sions and future work.

2 Gestures and the gesture recognition pipeline

As interface components, gestures can be classified accord-
ing to their type (static or dynamic). This classification or-
ganizes the vocabulary used by applications, and guides the
choice of appropriate methods for gesture recognition. This
section presents the differences between these two types of
gestures, and how these differences guide the organization
and implementation of a gesture recognition process.

1http://www.lapix.ufsc.br/index.php/gil-gesture-interaction-layer.

2.1 Gesture types

According to [8], a static gesture (or posture) is a static
movement, which occurs at a specific moment in time. The
posture can be formed by the entire body or one of its parts
(e.g., an arm or a hand). In turn, a dynamic gesture (or sim-
ply gesture) is a dynamic movement, which spans a time in-
terval and delineates a specific trajectory. Just as static ges-
tures, their dynamic counterpart can be executed by the en-
tire body or by a part of it.

The static and dynamic gestures (as well as the combina-
tion of both types) are used in a number of different works
that aim to improve the interaction experience. Iwai et al.
[9], for example, recognize mimics of musical instruments
and greetings from the Japanese signal language through dy-
namic gestures using static gestures as start and stop marks.
Lee et al. [10] control avatars through static and dynamic
gestures, and Tani et al. [5] relate static and dynamic ges-
tures to events for manipulation of radiological images. In
all cases, the interaction technique (gestures) is the same;
the difference is in the application context.

2.2 The gesture recognition process

In order to contextualize our work, we will first offer a short
review on the structure of the gesture recognition process as
a whole, addressing the weaknesses and caveats involved in
each step and their implications.

To use gestures as an interaction technique, a set of steps
must be followed. The number of steps varies according to
the hardware used, the type of gesture, and the application
context, as can be seen in Kjellström et al. [11] and Kim et
al. [12]. Despite the particularities, it is possible to identify a
sequential arrangement of these steps in a pipeline and their
organization in three actions: Data acquisition, data inter-
pretation, and software integration.

The data acquisition step collects and stores data perti-
nent to gestures. There are two common sources for these
data: Video streams/sets of static images (used on computer
vision-based interfaces) and posture/motion signals (used on
instrumented interfaces). The former uses a camera—or a
set of cameras—to acquire visual information of a gesture;
the latter uses signals generated by instrumented gloves and
motion trackers, which can be translated to postures and ges-
tures executed in an n-dimensional space.

Both types of data (visual and instrumented) are predis-
posed to different types of noise. The presence of noise does
not hinder the recognition process, but influences the re-
sults obtained by the data interpretation step. To minimize
this problem, two optional actions can be performed on the
collected data: Normalization and filtering. Through nor-
malization, time and space limits are established, allowing
sparse gestures to fit predefined intervals. Filtering, in turn,
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cleans the original data by suppressing irrelevant informa-
tion.

After the acquisition step, the obtained data are submitted
to a technique (or a set of techniques) that compose the data
interpretation step. At this point, the vocabulary of gestures
is known, and the algorithms that implement the techniques
are trained to classify the new data. The training process is
based on a set of gestures previously recorded (called train-
ing set), composed by examples of each gesture presented in
the vocabulary.

The algorithms used for gesture recognition are chosen to
be employed in the data interpretation step. Among a num-
ber of relevant criteria, the type of available data defines the
behavior of algorithms. For instance, the classification of a
static gesture uses a set of characteristics in a specific mo-
ment in time; on the other hand, the classification of a dy-
namic gesture uses various sets of characteristics related to
a time interval. In both cases, there is one gesture to be clas-
sified; however, the input data are different, and the chosen
algorithms must deal with this difference.

Finally, in the software integration step, the results of data
interpretation are translated to application events—which
can be the execution of a particular function, the updating
of the system’s current state or the change of the applica-
tion’s interaction mode [13]. The rules for the translation of
gestures to events are set individually for each application,
according to its context and usability.

At this point, the static and dynamic gestures can be
treated together (as complementary gestures) or individu-
ally. When treated together, static gestures usually mark the
start and end of an interaction, which is completed by the
dynamic gesture. The mouse motion in a 2D application and
the navigation in a 3D virtual environment are examples of
this combination. When considered individually, static and
dynamic gestures can be translated to atomic events (like
mouse clicks or commands to open menus or operate wid-
gets).

3 Related work

Different techniques to perform accurate gesture recognition
have been described in the literature. This section briefly
presents related work considered relevant, focusing on the
most common methods.

3.1 Neural networks

Fausett [14] sates that a neural network is an information-
processing system, characterized by an architecture, a learn-
ing process and an activation function. It is composed by
simple processing elements called neurons, which are con-
nected to other neurons by means of connection links. Each

link has an associated weight, which represent the informa-
tion used by the network to solve a problem. The whole
structure can be used to recognize and classify both sta-
tic and dynamic gestures, due to its generalization char-
acteristics. Xu et al. [6] developed a virtual training ap-
plication of artillery, Self-Propelled Gun (SPG), operated
through static gestures, and hand translations and rotations.
The recognition of static gestures was performed by a feed-
forward neural network with a single hidden layer, with 18
inputs (from an instrumented glove), 15 outputs (one for
each gesture class), trained with the backpropagation algo-
rithm. Their setup achieved a recognition rate of 98.0%,
using a training set of 200 gestures and a test set of 100
gestures, performed by five different people. Stergiopoulou
and Papamarkos [15] used an unsupervised neural classi-
fier (SGONG—Self-Growing and Organized Neural Gas)
to classify static gestures whose data were acquired from a
camera, respecting the following assumptions: Gestures are
executed with the right hand, with the arm in vertical posi-
tion, palm facing the camera and fingers raised or not. Also,
the technique considers a plain and uniform background. A
recognition rate of 90.45% was achieved, using a set of 31
different gestures, with a mean processing time of 1.5 sec-
onds per gesture. Bailador et al. [16] recognized dynamic
gestures using a set of Continuous Time Recurrent Neural
Networks (CTRNN). The gesture data were generated by
accelerometers, and the neural networks were used to pre-
dict future acceleration values from current ones; the gesture
related to the neural network with the smallest prediction
error wins. Eight different classes of gestures made up the
vocabulary, with a training set of 40 gestures and a test set
of 120 gestures (all executed by one person). The method
achieved a recognition rate of 94.0% in a controlled envi-
ronment (with rest positions between the gestures), and a
recognition rate of 63.6% in a realistic environment (with
gestures been executed between routine activities, like sit-
ting and standing up, among others).

3.2 Support vector machines

A Support Vector Machine is a classifier based on the map-
ping of characteristics extracted from instances—the fea-
ture vectors—to points in space [17]. In the training phase,
the points are organized in different classes, divided by a
clear gap that is as wide as possible, represented by a hy-
perplane. In the classification phase, new feature vectors
are mapped to points and, subsequently, predicted to be-
long to a class established during the training phase. This
type of classifier provides a binary classification, generating
by default two classes divided by an ideal hyperplane; how-
ever, the definition of multiple evaluation classes is possible
through the combination of multiple binary problems to a
multiclass problem, based on strategies like one-versus-all
or one-versus-one.
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Ren and Zhang [18] used a Support Vector Machine com-
bined with Minimum Enclosing Ball, a method they called
MEB-SVM, to classify static gestures acquired from a video
camera. After the image acquisition, image segmentation,
contour selection, and classification, their work achieved a
mean recognition rate of 92.89%. Liu et al. [19] used an
SVM with Hu moments to classify hand postures acquired
from a camera, automating the verification of hand inte-
grality for the Chinese Driver Physical Examination Sys-
tem. An error rate of 3.5% was generated after tests were
executed with data from 20 people. Chen and Tseng [20]
developed a robotic visual system to recognize static ges-
tures for finger guessing games. An SVM classifier was im-
plemented and configured to be robust enough to work re-
gardless of hand angles and skin colors. In their tests, their
setup achieved a correct recognition rate of 95.0% for the
paper, rock, and scissors game, using data from four people.
Meng, Pears, and Bailey [21] presented a method to recog-
nize human actions from video streams, using a linear SVM
as classifier, trained with data acquired from Motion History
Image (MHI) and Hierarchical Motion History Histogram
(HMHH). Using examples of walking, jogging, running,
boxing, hand clapping, and hand waving, recorded from 25
people in four different scenarios, the method achieved a
maximum recognition rate of 93.1%.

3.3 Simple pattern recognition techniques

Other methods, commonly based on pattern similarity, can
be adapted to the context of gestures. It is the case of near-
est neighbor techniques, which perform the classifications
based on distance metrics [22]. For each instance to be clas-
sified, the distance of its feature vectors to the feature vectors
of already known classes is calculated, and the minor dis-
tance (or k minor distances, in the case of k-nearest neigh-
bor) defines the result. The methods can be implemented
with different data structures and distance metrics, achiev-
ing good evaluation times.

Deller et al. [7] made a simple comparison between data
acquired from an instrumented glove and a library of static
gestures to classify sequences of static gestures and wrist ro-
tations. Their method calculates the distance between the ac-
quired data and the training dataset; if the distance fits within
a predefined threshold, the gesture is recognized. Unfortu-
nately, their work does not present quantitative results. Ste-
fan et al. [23] used a nearest neighbor technique to classify
dynamic gestures based on their feature vectors, with data
acquired from video streams. A recognition rate of 96.3%
was achieved, based on gestures representing digits from
0 to 9. Ziaie et al. [24] used a weighted k-nearest neigh-
bor combined with a naïve Bayes approach to recognize
three different static hand gestures. With tests executed in
the domain of the JAST human-robot dialog system, the ap-
proach obtained more than 93.0% of correct classifications.

Tarrataca et al. [25] used a k-nearest neighbor and a Hid-
den Markov Model to build a gesture recognition system
for smartphones, classifying static gestures and sequences of
static gestures. Using the phone’s camera for image acquisi-
tion, the system was trained to recognize three different ges-
tures, achieving an average recognition rate of 83.3%. Kjell-
ström et al. [11] controlled the grasp action of a robot arm
using the recognition of a hand shape, made using the Local-
ity Sensitive Hashing (LSH) approach—an approximation
of the k-nearest neighbor technique. The recognition perfor-
mance achieved was comparable to the human performance,
with 75.0% correct classifications. Wang and Popović [26]
developed a system to facilitate 3D articulated user input,
using a colored glove and a single camera. The proposed
method, based on nearest neighbor, compares the color pat-
tern of the glove with the color pattern of different poses pre-
viously recorded and stored in a database. The work does not
present quantitative results, but describes proof-of-concept
applications where the method was applied.

3.4 Criticism

The research works mentioned above share some charac-
teristics: Each work evaluates a single gesture recognition
technique through the use of one or more algorithms, using
a particular dataset for training and testing, and measure the
accuracy of each technique in terms of its recognition rate.
The methods and the dataset were chosen in a more or less
ad hoc manner, without offering well-founded justification
for either and also without presenting an objective compari-
son of the obtained results against other techniques.

A more objective approach, based upon public datasets
and quantitative and comparable results is necessary. In the
present work, three different techniques for static gesture
recognition are evaluated. This is achieved using the same
dataset for training and testing, and measuring the preci-
sion and the performance for each method. Furthermore,
the work aims to identify the best method from the set of
tested approaches, which could be used to build highly re-
sponsive and intuitive interfaces. Our datasets are made pub-
licly available, in order to allow the research community to
test other approaches against the results we present here.

4 Experimental environment

The evaluation of precision and performance of gesture
recognition techniques demands a hardware and software
setup, as well as a vocabulary of static gestures to be used as
common input for the different algorithms. This section de-
scribes the experimental environment for the current work,
through the specification of hardware devices and software
components.
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Fig. 1 Hardware setup—data glove, laptop/webcam and motion
tracker (not used for the current experiments)

Table 1 5DT Data Glove 5 Ultra specifications [27]

Item Specification

Material Black Stretch Lycra

Sensor Resolution 12-bit A/D (typical range 10 bits)

Flexure Sensors Fiber Optics Based

5 Sensors in total

1 Sensor per finger, measures average of
knuckle and first joint

Computer Interface Full-speed USB 1.1

RS-232 (via optional serial interface kit)

Power Supply Via USB Interface

Sampling Rate Minimum 75 Hz

4.1 Hardware setup

The experimental environment for this work simulates an in-
strumented interface, which uses data acquired from a data
glove. This hardware setup composes the first step of the
gesture recognition pipeline, generating data for classifica-
tion algorithms. The hardware used for data acquisition is
shown in Fig. 1.

Static gestures are represented by a set of values, which
were acquired using an instrumented glove from Fifth Di-
mension Technologies.2 The glove used—model 5DT Data
Glove 5 Ultra,3 for the right hand—offers a set of five fiber
optic sensors, one for each finger, disposed on the top of
the glove. Each sensor measures the flexure of an individual
finger. A more detailed specification is shown in Table 1.

2http://www.5dt.com/.
3http://www.5dt.com/products/pdataglove5u.html.

Table 2 Example of static gesture data

Sensor description Sensor data

Position Driver Sensor
Index

Raw Scaled

Thumb 0 3807 0.149635

1 3807 0.149635

2 0 0

Index finger 3 3086 0.964564

4 3086 0.964564

5 0 0

Middle finger 6 3447 0.729363

7 3447 0.729363

8 0 0

Ring finger 9 2702 0.69604

10 2702 0.69604

11 0 0

Little finger 12 2148 0.145

13 2148 0.145

14 0 0

15 0 0

Pitch angle 16 2048 0

Roll angle 17 2048 0

The access to the glove’s hardware is made through an
Application Programming Interface (API), which provides
a set of functions to initialize and shutdown the glove, cali-
brate sensors, and retrieve values from sensors (individually
or collectively). For each sensor, it is possible to retrieve two
types of data: Raw (basic) values and scaled (normalized)
values. Raw data range from 0 to 4,095, and correspond to
values acquired directly from sensors, without any modifica-
tion; scaled data correspond to values acquired from sensors,
normalized to fit the interval [0,1]. The higher the value of
a sensor, the higher is the flexure degree of the correspond-

ing finger. Table 2 shows an example of a static gesture (de-
picted in Fig. 2) through the acquired sensor values.

The manufacturer of the data glove used in this work pro-
vides a generic communication driver, which can be used
with different glove models. This driver encapsulates the ac-
quired data in a data frame, whose structure allows the stor-
age of data from a number of sensors, as well as data from
sensors of different types. For the 5DT Data Glove 5 Ultra
model, only the sensors identified by indexes 0, 3, 6, 9 e 12
(highlighted in gray on Table 2) are considered for training
and evaluation; the indexes 2, 5, 8, 11, 14, 15, 16, 17 are
discarded because there are no data available for the glove
model, and the indexes 1, 4, 7, 10, 13 are ignored (since
their values are duplicates of values acquired from sensors
identified by indexes 0, 3, 6, 9 e 12).

http://www.5dt.com/
http://www.5dt.com/products/pdataglove5u.html
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Fig. 2 Example of static gesture

The experiments were performed on a laptop with an
AMD Turion™X2 Dual Core processor (2.0 GHz), 2 Gb
RAM, running Microsoft Windows®XP Professional SP3.

4.2 Software for data acquisition

The data for the training and evaluation steps were acquired
through an application specially developed for this purpose.
In this application, the screen is divided in two parts: On
the left, a media player is responsible for exhibiting short
videos of static gestures (according to an order defined by a
playlist), at a 24 frames per second (fps) rate; on the right, a
webcam captures the user actions, providing an immediate
visual feedback. All the controls needed to configure and
use the application are located in a menu bar (at the top of
screen) and on a button bar (at the bottom of screen), as can
be seen in Fig. 3.

After the configuration of the communication port for the
data glove, the image adjusting for the webcam and the stip-

ulation of the number of iterations to be performed by each
user, the data acquisition process starts with the calibration
of the glove. The calibration procedure adjusts the glove’s
sensors to the shape of users’ hands, allowing the retrieval
of fine-tuned data. To calibrate the glove, each user follows
a video with a sequence of hand poses. At the end of the cal-
ibration process, the glove driver stores minimum and max-
imum flexure values for each user’s finger. These values are
used to compute the final data.

The application adopts the same sequence of steps to ac-
quire data for static gestures. In the beginning of each iter-
ation, the playlist is shuffled, thus guaranteeing that a given
posture is not stressed by sequential execution. The user
watches, then, a short video of a static gesture to be exe-
cuted. At this point, a click on the “Record” button captures
the raw and scaled data from the glove. The collected data
are stored in text files, identified by the user number, type
of data (raw/scaled), posture number and iteration number.
Also, screenshots are taken from postures. These steps are
repeated until the end of the playlist execution.

In order to allow the users to receive a visual feedback,
the webcam is turned on at the application startup, and stays
online while the application is executed. This strategy helps
the users on execution of gestures, offering visual compari-
son capabilities between the gesture model and the gesture
that is been executed.

4.3 Gesture recognition techniques

The choice for the gesture recognition techniques evalu-
ated in this work was made considering the relevance of re-
lated work listed in Sect. 3, as well as the recognition rates
achieved by experiments. For the static gesture recognition,
three techniques were chosen: A Nearest Neighbor algo-
rithm based on K-D Trees, implemented using the Approxi-

Fig. 3 Data acquisition
software during execution
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Fig. 4 Vocabulary of static
gestures

mate Nearest Neighbor Searching (ANN) library4; a Neural
Network, implemented using the Fast Artificial Neural Net-
work Library (FANN)5; and a Support Vector Machine, im-
plemented using the LIBSVM6 library. All techniques were
adapted to use the text files generated by the data acquisi-
tion application as input for training and evaluation, consid-
ering raw and scaled data types. The configuration parame-
ters used were defined empirically through a number of tests
executed with subsets of the original data. The K-D Tree
used for nearest neighbor classification was built directly
from data files, without specific configuration parameters.
The neural network was configured with five layers: An in-
put layer with five neurons, three hidden layers with 18 neu-
rons each and an output layer with 15 neurons. The training
was performed with a number of epochs varying from 100 to
2,500, using a learning rate of 0.5. The SVM was configured
as a classification SVM type 1 (C-SVM), using two different
kernels: Radial Basis Function (RBF) and SIGMOID. All li-
braries and software were built using Microsoft Visual C++
2005.

5 Results

Through the use of the hardware and software components
described in Sect. 4, data from static gestures were collected
and evaluated using the gesture recognition techniques pre-
viously chosen. This section presents the obtained results,
focusing on the precision and performance of each tech-
nique.

The data for the experiments were collected from 33
users, using the application described in Sect. 4. A vocab-
ulary of 15 static gestures (shown in Fig. 4) was defined and

4http://www.cs.umd.edu/~mount/ANN/.
5http://leenissen.dk/fann/.
6http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

presented to the users, guiding their behavior. Each user per-
formed a set of five enactments of the whole gesture set. The
gesture order of each repetition was random and determined
by the playlist mentioned before, the first iteration being su-
pervised by a specialist (to solve questions about the proce-
dure). A total of 2,475 static gestures were collected, com-
posing the experimental dataset.

The training and evaluation steps were performed using
the repeated random sub-sampling validation. For each iter-
ation (from a total of 10), one third of the dataset was se-
lected as the training set, and the remainder of the original
dataset was used as the validation set; in concrete numbers,
825 instances were used as training set and 1,650 instances
were used as validation set.

Aiming to identify the importance of the partitioning
method adopted to split the original dataset for training and
validation, and its relation to the obtained results, two differ-
ent strategies were used. The first partitioning strategy ran-
domly selected as the training set a gesture set composed
of one third of the entire dataset, selecting random gestures
uniformly distributed between all gesture classes. The sec-
ond partitioning strategy randomly selected one third of the
users involved, using all the gesture instances recorded by
these users as the training set. In both cases, the remainder
of the original dataset was used as the validation set. From
now on, these strategies will be referred to, respectively, as
PS-1 and PS-2.

The results obtained in this manner were organized as
confusion matrices, like the ones presented in Table 3 and
Table 4. These matrices show the results obtained for the
nearest neighbor recognition technique, using the PS-1 and
PS-2 partitioning strategies, respectively. Predicted gestures
are organized in rows, and evaluated gestures are organized
in columns. The cells on the main diagonal (highlighted in
gray) display the true positive occurrences, while the other
cells display the false positive evaluations. Each cell stores
two values: The first one is the result of the evaluation us-
ing the glove’s raw data, and the second one is the result of

http://www.cs.umd.edu/~mount/ANN/
http://leenissen.dk/fann/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


154 J Braz Comput Soc (2010) 16: 147–162

Ta
bl

e
3

N
ea

re
st

N
ei

gh
bo

r
tr

ai
ne

d/
ev

al
ua

te
d

em
pl

oy
in

g
th

e
PS

-1
st

ra
te

gy

A
ct

ua
l(

ra
w

/s
ca

le
d)

Pr
ec

is
io

n
(%

)
(r

aw
/s

ca
le

d)
P0

1
P0

2
P0

3
P0

4
P0

5
P0

6
P0

7
P0

8
P0

9
P1

0
P1

1
P1

2
P1

3
P1

4
P1

5

Predicted(raw/scaled)

P0
1

77
0/

82
8

12
3/

13
2

49
/3

0
58

/3
3

41
/1

8
0/

0
1/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
0/

0
58

/5
9

70
.0

0/
75

.2
7

P0
2

14
5/

14
2

44
6/

55
3

27
3/

24
7

20
4/

13
5

18
/1

1
0/

0
0/

2
0/

0
1/

2
0/

0
0/

0
0/

0
0/

0
1/

0
12

/8
40

.5
5/

50
.2

7
P0

3
95

/3
9

26
3/

22
2

46
9/

51
8

24
8/

30
2

14
/5

0/
0

0/
0

0/
0

1/
6

0/
0

0/
0

0/
0

0/
0

1/
0

9/
8

42
.6

4/
47

.0
9

P0
4

58
/4

7
20

6/
14

0
24

7/
31

5
52

6/
54

8
24

/9
0/

0
0/

0
4/

4
3/

6
4/

4
0/

0
0/

0
0/

0
0/

0
28

/2
7

47
.8

2/
49

.8
2

P0
5

40
/2

7
16

/2
8

5/
7

21
/7

87
3/

93
2

17
/1

0
5/

0
6/

0
2/

0
2/

8
4/

0
0/

5
13

/0
0/

0
96

/7
6

79
.3

6/
84

.7
3

P0
6

1/
0

0/
0

0/
0

0/
0

14
/2

1
90

5/
10

53
57

/2
5

0/
0

4/
0

42
/1

14
/0

30
/0

8/
0

25
/0

0/
0

82
.2

7/
95

.7
3

P0
7

0/
1

0/
4

0/
0

0/
2

14
/2

75
/4

0
90

0/
10

35
34

/0
23

/0
23

/0
2/

0
24

/1
6

4/
0

1/
0

0/
0

81
.8

2/
94

.0
9

P0
8

0/
0

0/
0

0/
0

1/
0

3/
0

6/
0

52
/1

86
1/

97
3

20
/1

6
13

0/
98

6/
0

10
/0

10
/1

2
1/

0
0/

0
78

.2
7/

88
.4

5
P0

9
0/

0
0/

0
0/

0
1/

0
4/

1
2/

0
15

/2
10

/7
81

7/
95

8
4/

0
12

8/
77

1/
0

0/
0

11
8/

55
0/

0
74

.2
7/

87
.0

9
P1

0
0/

0
0/

0
0/

0
0/

1
1/

13
64

/1
10

/0
12

0/
90

2/
2

83
6/

96
4

9/
3

0/
0

52
/1

9
6/

7
0/

0
76

.0
0/

87
.6

4
P1

1
0/

0
1/

0
0/

0
0/

0
4/

1
13

/0
0/

0
0/

0
81

/5
1

3/
0

67
8/

72
0

0/
0

0/
0

32
0/

32
8

0/
0

61
.6

4/
65

.4
5

P1
2

0/
0

0/
0

0/
0

0/
0

8/
0

14
/1

0
35

/2
5

0/
0

0/
0

8/
0

0/
0

99
8/

10
64

37
/1

0/
0

0/
0

90
.7

3/
96

.7
3

P1
3

0/
0

0/
0

0/
2

0/
3

12
/2

2/
0

2/
1

5/
14

0/
0

59
/1

7
0/

0
36

/3
98

4/
10

58
0/

0
0/

0
89

.4
5/

96
.1

8
P1

4
0/

0
0/

0
5/

0
2/

0
1/

5
11

/0
0/

0
0/

0
70

/3
4

16
/2

27
8/

33
6

0/
0

0/
0

71
7/

72
3

0/
0

65
.1

8/
65

.7
3

P1
5

77
/5

8
24

/7
10

/2
56

/1
1

80
/8

5
0/

0
2/

0
0/

0
0/

2
0/

0
0/

0
0/

0
0/

0
0/

0
85

1/
93

5
77

.3
6/

85
.0

0

M
ed

ia
n

pr
ec

is
io

n
(%

)
(r

aw
/s

ca
le

d)
70

.4
9/

77
.9

5

Ta
bl

e
4

N
ea

re
st

N
ei

gh
bo

r
tr

ai
ne

d/
ev

al
ua

te
d

em
pl

oy
in

g
th

e
PS

-2
st

ra
te

gy

A
ct

ua
l(

ra
w

/s
ca

le
d)

Pr
ec

is
io

n
(%

)
(r

aw
/s

ca
le

d)
P0

1
P0

2
P0

3
P0

4
P0

5
P0

6
P0

7
P0

8
P0

9
P1

0
P1

1
P1

2
P1

3
P1

4
P1

5

Predicted(raw/scaled)

P0
1

40
5/

78
4

15
2/

17
1

87
/2

8
10

4/
36

12
3/

32
1/

0
1/

1
0/

0
0/

0
0/

0
2/

0
1/

0
6/

0
1/

0
21

7/
48

36
.8

2/
71

.2
7

P0
2

15
4/

16
9

22
8/

45
4

21
5/

24
0

29
2/

19
8

94
/1

5
0/

0
2/

4
0/

0
0/

4
0/

0
1/

0
0/

0
2/

6
1/

0
11

1/
10

20
.7

3/
41

.2
7

P0
3

73
/6

9
18

5/
23

4
30

1/
42

8
33

0/
34

5
89

/6
1/

0
4/

0
0/

0
0/

9
0/

0
0/

2
1/

0
3/

3
1/

0
11

2/
4

27
.3

6/
38

.9
1

P0
4

40
/6

1
18

6/
16

6
24

1/
34

0
39

3/
47

2
10

4/
16

0/
0

1/
0

6/
5

2/
15

0/
0

0/
3

0/
0

0/
0

0/
0

12
7/

22
35

.7
3/

42
.9

1
P0

5
79

/6
8

28
/3

2
26

/7
38

/1
5

53
7/

81
2

22
/1

9
31

/3
14

/0
2/

1
11

/4
0

2/
1

18
/9

70
/0

6/
0

21
6/

93
48

.8
2/

73
.8

2
P0

6
0/

0
0/

0
0/

0
0/

0
57

/2
8

59
7/

99
6

81
/4

3
9/

0
17

/0
11

8/
3

38
/0

11
7/

30
16

/0
50

/0
0/

0
54

.2
7/

90
.5

5
P0

7
1/

0
1/

3
1/

0
0/

3
72

/9
14

1/
37

58
0/

10
22

10
5/

0
45

/0
25

/1
0/

0
11

7/
25

2/
0

10
/0

0/
0

52
.7

3/
92

.9
1

P0
8

0/
0

0/
0

0/
0

3/
0

31
/1

30
/0

93
/9

65
4/

95
8

36
/1

1
12

3/
11

0
2/

0
7/

0
10

7/
11

14
/0

0/
0

59
.4

5/
87

.0
9

P0
9

3/
0

0/
1

0/
0

0/
4

17
/0

22
/0

99
/0

39
/1

4
59

2/
98

6
24

/0
15

9/
43

0/
0

2/
0

14
3/

52
0/

0
53

.8
2/

89
.6

4
P1

0
0/

0
0/

0
0/

0
1/

0
10

/1
2

11
8/

0
11

/1
8

12
4/

10
4

3/
3

64
1/

91
8

14
/0

3/
0

14
0/

37
35

/8
0/

0
58

.2
7/

83
.4

5
P1

1
0/

0
0/

0
0/

0
0/

0
19

/3
99

/1
11

/0
12

/0
76

/1
05

34
/2

52
7/

58
0

1/
0

4/
0

31
7/

40
9

0/
0

47
.9

1/
52

.7
3

P1
2

0/
0

0/
0

0/
0

1/
0

16
/2

9
57

/9
52

/4
7

23
/0

1/
0

11
/0

0/
0

80
2/

10
15

13
6/

0
1/

0
0/

0
72

.9
1/

92
.2

7
P1

3
2/

1
0/

3
0/

7
1/

6
16

/5
18

/0
3/

2
18

/4
7

0/
0

12
2/

43
0/

0
10

7/
4

81
3/

98
2

0/
0

0/
0

73
.9

1/
89

.2
7

P1
4

0/
0

2/
0

1/
0

2/
0

3/
3

75
/0

6/
0

11
/0

81
/7

4
54

/3
37

2/
42

4
2/

0
7/

0
48

2/
59

6
2/

0
43

.8
2/

54
.1

8
P1

5
12

3/
12

4
10

0/
10

35
/3

60
/2

7
25

4/
13

4
0/

0
4/

0
0/

0
0/

5
0/

0
0/

0
0/

0
0/

0
1/

0
52

3/
79

7
47

.5
5/

72
.4

5

M
ed

ia
n

pr
ec

is
io

n
(%

)
(r

aw
/s

ca
le

d)
48

.9
4/

71
.5

2



J Braz Comput Soc (2010) 16: 147–162 155

the evaluation using the glove’s scaled data. The precision
of the nearest neighbor technique can be seen in the last col-
umn, individually for each gesture and collectively for all
the vocabulary. The precision for each gesture is calculated
dividing the true positive occurrences (stored in the main di-
agonal) by the sum of true positive occurrences and false
positive occurrences (resulting in 1,100 evaluation instances
per gesture); the overall precision, in turn, is calculated by
the mean of individual precisions of all gestures.

The results for the technique based on the neural network
are shown in Table 5 and Table 6. Compared to the nearest
neighbor technique, the neural network presented a slightly
poorer precision classifying the scaled data–a difference of
6.4% and 0.55% for PS-1 and PS-2 strategies, respectively.
But the main difference between the two techniques was the
precision achieved classifying raw data. In the best case, the
nearest neighbor technique achieved a precision of 70.49%
against 17.98% achieved by the neural network. A possible
explanation for this behavior is the range for raw and scaled
data. As stated in Sect. 4, the glove’s raw data range from
0 to 4,095, while the glove’s scaled data range from 0 to 1.
According to Sarle [28], large attribute values might cause
numerical problems, which can interfere on network eval-
uation; this occurs because attributes with greater numeri-
cal ranges can dominate attributes with smaller numerical
ranges, distorting the acquired results. The obtained results,
related to their respective training epochs, can be seen on
Fig. 5 and Fig. 6.

Table 7 and Table 8 show the results obtained using an
SVM. This technique presented the best and the worst re-
sults for the classification of scaled and raw data, respec-
tively, in numbers, 79.13% and 6.81%. The behavior of the
SVM is quite similar to the neural network, since the same
numerical restrictions can be applied to it. A comparison be-
tween the results obtained with different types of kernel can
be seen in Fig. 7.

Through the analysis of the confusion matrices, it is pos-
sible to identify some characteristics common to all meth-
ods:

• Evaluation of scaled data—the evaluation of scaled data
presents better results than the evaluation of raw data.
Two factors contribute to this result: The calibration
process helps by adjusting the glove’s sensors to the user’s
hand, allowing a fine-tuned gesture acquisition; and the
difference regarding the ranges for raw and scaled data,
which influences the results of the neural network and the
SVM techniques;

• Influence of the partitioning strategy—the PS-1 strategy
presents better results than the PS-2 strategy. This is be-
cause the PS-1 strategy does not limit the training data to
gesture particularities of a specific set of users, allowing
a more heterogeneous set of gesture instances. The PS-2
strategy, in turn, generates a more homogeneous training Ta
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Fig. 5 Median precision ×
training epochs (PS-1 strategy)

Fig. 6 Median precision ×
training epochs (PS-2 strategy)

Fig. 7 Median precision ×
kernel option (SVM technique)

set (through the selection of a number of users), which
limits the generalization of the recognition techniques;

• Specific gestures with low recognition rate—specific ges-
tures in the vocabulary were shown to yield a low recog-
nition rate. This can be explained by the similarities be-
tween these gestures. The gestures labeled P02, P03, P04,
P11, and P14 have the worst recognition rates. In Fig. 4,
it is possible to observe that gestures P02, P03, and P04
are quite similar (in terms of finger flexures), as well
as the gestures P11 and P14. Similar finger flexure con-

figurations generate similar patterns, which can confuse
the classifiers, hence generating false positives. Tables 9,
10, and 11 show the results obtained by grouping these
gestures together, using the PS-1 partitioning strategy.
The grouping of similar gestures improves the individ-
ual recognition rate for these gestures and, consequently,
makes for a better overall precision. A gain of 11.8%,
14.34%, and 11.83% were obtained, respectively, for the
nearest neighbor, neural network, and SVM methods con-
sidering the scaled data. Figure 8 resumes the acquired
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results in terms of partitioning strategies, data types, vo-
cabulary differences, and median precision.

The performance evaluation of the recognition tech-
niques was executed for both the training and the recog-
nition step. The time spent for the training step is measured
through the calculation of the Mean Training Time (MTT),
which comprehends the process of loading patterns from
text files to memory, the construction of a data structure to
store data according to the selected classifier, and the execu-
tion of a training algorithm. For the nearest neighbor clas-
sifier, specifically, there is no training algorithm (since K-D
Tree organizes itself during the construction step). The time
spent for the evaluation step, in turn, is measured through
the calculation of the Mean Evaluation Time (MET), which
comprehends the process of loading a gesture data to mem-
ory and its classification. Table 12 and Table 13 summarize
the MTT and MET values obtained for each classifier, in-
cluding the Standard Deviation (SD). All times were col-
lected during the training and evaluation steps performed to
obtain the precision values presented in this section, and are
expressed in seconds (s), milliseconds (ms) and microsec-
onds (µs).

The results in Table 12 and Table 13 show that, despite
the type of data (raw/scaled), training and evaluation times
are balanced. There is, however, one exception: The SVM
technique presents a low training and evaluation time when
scaled data are used. In this case, a maximum reduction of
57.84% for training time and 42.27% for evaluation time
were achieved. Figure 9 shows a comparison between the
evaluation times, considering the partitioning strategies and
the data types.

6 Discussion

The results presented in Sect. 5 summarize the achievements
in terms of precision and performance for the analyzed ges-
ture recognition methods. This section discusses these re-
sults, highlighting important aspects that will subsidize the
final conclusions.

The data acquisition process used to acquire the users’
behavior has shown to be robust enough, which can be con-
firmed by the stable results obtained for a number of ges-
tures. The dynamic of videos showing static gestures from
different angles, as well as the webcam providing immediate
visual feedback, helped users to correct posture problems,
which reflect on the quality of acquired data. The presence
of a specialist on the first iteration, answering questions and
guiding users through the interface, helped the understand-
ing of the entire process by the users.

The partitioning strategies used in this work, PS-1 and
PS-2, have a direct impact on the obtained results. Training

sets composed by instances from a number of randomly cho-
sen users improve the recognition rate, since the heterogene-
ity of instances implies a better generalization and avoids the
systematic error which is introduced by the gesture speci-
ficities of a limited user set. The selection of specific users
limits the diversity of training data, considering that a user
executes gestures of a same class in a similar way.

The choice between raw and scaled data, as shown in the
confusion matrices, plays an important role in the effective-
ness of a classifier. In all cases, scaled data generate better
results than raw data, which justifies the normalization in
conjunction with the execution of a calibration routine for
each user. Despite the fact that all users execute the same
gestures, each one has their own finger flexure capabilities,
which reflects directly on the acquired data. It is also possi-
ble to store the calibration values for a specific user, using
these values as a calibration identity for that user.

The choice of gestures to compose a vocabulary has a
direct impact on the choice of hardware to be used, and
vice versa. Gestures P02, P03, and P04, for instance, have
a distinct visual representation; however, their finger flex-
ure patterns are quite similar. The same occurs with gestures
P11 and P14. These gestures produce the worst classifica-
tion rates, since the data glove used restricts the acquisition
of data to simple flexure values. For a correct classification
of these gestures in the context of the present work, abduc-
tion measures between fingers are required or the gestures
must be grouped and resumed to a single finger flexure pat-
tern.

Finally, the performance obtained for all techniques al-
lows their use in conjunction with interactive interfaces. In
this case, the evaluation time can be even smaller, since there
is no need to retrieve data from text files: Sensor values can
be retrieved and dispatched directly to the classifiers, avoid-
ing I/O handling. The training time, in turn, can be mini-
mized by storing the already trained structure for each clas-
sifier, loading it whenever necessary.

7 Conclusions and future work

This work presents an evaluation of static gesture recogni-
tion techniques, aiming to identify the best method in terms
of precision and performance. The data used for training and
evaluation of the selected classifiers were collected from a
number of users, and different combinations of data types
and partitioning strategies were tested.

Through the analysis of obtained results, it became clear
that the choice of a gesture recognition technique must con-
sider a set of variables. Each variable influences the results
in a specific way, and the final result must be subsidized by
the whole variable set.

The importance of normalization is attested by the differ-
ences presented in the confusion matrices, where the results
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Table 10 Precision of recognition techniques with similar gestures grouped—Neural Network

Nearest
Neighbor

Actual (raw/scaled) Precision (%)
(raw/scaled)

P01 P02/P03/P04 P05 P06 P07 P08 P09 P10 P11/P14 P12 P13 P15

Pr
ed

ic
te

d
(r

aw
/s

ca
le

d)

P01 239/891 416/75 0/22 27/0 31/0 75/0 0/0 0/0 45/9 85/1 3/6 179/96 21.73/81.00

P02/P03/P04 681/494 1238/2359 2/82 81/0 123/9 219/8 0/129 3/0 142/12 260/13 13/17 538/177 37.52/71.48

P05 174/36 325/28 0/694 28/114 98/12 81/0 0/1 10/3 38/0 144/45 20/9 182/158 0.00/63.09

P06 71/0 168/0 1/7 43/1074 167/4 122/0 30/0 133/0 171/0 163/10 3/5 28/0 3.91/97.64

P07 31/0 158/0 0/1 38/79 248/998 117/0 29/0 108/0 131/0 190/15 6/0 44/7 22.55/90.73

P08 45/0 90/0 0/0 44/1 138/13 255/975 31/13 234/96 100/0 130/0 28/2 5/0 23.18/88.64

P09 13/1 138/0 0/0 47/8 79/5 96/13 140/975 77/1 423/97 84/0 3/0 0/0 12.73/88.64

P10 78/0 110/0 1/3 42/18 123/23 218/59 21/3 239/946 110/2 128/1 20/45 10/0 21.73/86.00

P11/P14 41/8 303/0 0/9 93/12 130/1 202/3 251/167 151/83 827/1911 186/0 11/6 5/0 37.59/86.86

P12 45/0 117/0 1/8 26/10 123/27 113/0 0/0 60/0 16/0 502/1046 49/9 48/0 45.64/95.09

P13 72/0 85/0 0/0 26/0 84/0 164/33 0/0 132/33 31/0 265/8 183/1026 58/0 16.64/93.27

P15 184/63 424/8 0/54 27/3 38/1 34/0 0/0 0/1 13/0 99/0 0/0 281/970 25.55/88.18

Median precision (%) (raw/scaled) 22.40/85.89

Fig. 8 Precision evaluation
results for static gestures

Fig. 9 Performance evaluation
results for static gestures

from raw and scaled data were discrepant enough to point
out the superiority of scaled data. Partitioning strategies, in
their turn, contribute to improve the recognition rates by pro-

viding heterogeneous training datasets, and here the close
relation between hardware and gesture vocabulary proved
to be a relevant aspect. The performance factor contributes
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Table 11 Precision of recognition techniques with similar gestures grouped—Support Vector Machine

Support Vector
Machine

Actual (raw/scaled) Precision (%)
(raw/scaled)

P01 P02/P03/P04 P05 P06 P07 P08 P09 P10 P11/P14 P12 P13 P15

Pr
ed

ic
te

d
(r

aw
/s

ca
le

d)

P01 11/884 4/152 0/23 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1085/41 1.00/80.36

P02/P03/P04 2/174 18/3048 0/40 0/0 0/0 0/4 0/2 0/1 0/1 0/0 0/2 3280/28 0.55/92.36

P05 0/26 0/41 12/934 0/8 0/0 0/0 0/0 0/9 0/0 0/5 0/2 1088/75 1.09/84.91

P06 0/0 0/0 0/21 43/1053 2/18 0/0 0/0 0/1 0/0 0/7 0/0 1055/0 3.91/95.73

P07 0/0 0/6 0/0 2/42 20/1028 0/0 0/0 0/3 0/0 0/21 0/0 1078/0 1.82/93.45

P08 0/0 0/0 0/0 0/0 0/5 19/1008 0/6 0/71 0/0 0/0 0/10 1081/0 1.73/91.64

P09 0/0 0/0 0/1 0/0 0/1 0/6 3/979 0/0 0/113 0/0 0/0 1097/0 0.27/89.00

P10 0/0 0/0 0/5 0/0 0/6 0/89 0/0 13/969 0/2 0/0 1/29 1086/0 1.18/88.09

P11/P14 0/0 0/0 0/10 0/0 0/0 0/2 5/100 0/3 20/2085 0/0 0/0 2175/0 0.91/94.77

P12 0/0 0/0 0/0 0/14 0/20 0/0 0/0 0/0 0/0 14/1066 0/0 1086/0 1.27/96.91

P13 0/0 0/5 0/0 0/1 0/0 0/7 0/0 4/18 0/0 0/4 21/1065 1075/0 1.91/96.82

P15 0/84 0/15 0/39 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1100/962 100.00/87.45

Median precision (%) (raw/scaled) 9.64/90.96

Table 12 Performance of
training/evaluation using raw
data

Performance (raw)

PS-1 PS-2

MTT/SD MET/SD MTT/SD MET/SD

Nearest Neighbor 173.4 ms/15.52 ms 229.82 µs/322.78 µs 169.7 ms/14.63 ms 239.55 µs/368.47 µs

Neural Network 40.78 s/0.08 s 264.34 µs/220.20 µs 41.6 s/0.03 s 259.69 µs/188.4 µs

Support Vector Machine 1.12 s/0.08 s 859.32 µs/261.55 µs 1.11s/0.07 s 809.62 µs/311.87 µs

Table 13 Performance of
training/evaluation using scaled
data

Performance (scaled)

PS-1 PS-2

MTT/SD MET/SD MTT/SD MET/SD

Nearest Neighbor 176.1 ms/14 ms 262.32 µs/154.71 µs 177.1 ms/18.72 ms 251.62 µs/204.67 µs

Neural Network 40.68 s/0.05 s 272.19 µs/154.65 µs 41.59 s/0.07 s 268.08 µs/188.48 µs

Support Vector Machine 472.2 ms/14.65 ms 522.68 µs/407.8 µs 468.4 ms/20.52 ms 467.37 µs/409.16 µs

to establish how suitable a technique is for interactive use,
since it demands fast response times and adaptability to vo-
cabularies of variable length.

Using precision as a selection criterion, the SVM tech-
nique presented the best results for both original and mod-
ified dataset, achieving a recognition rate of 79.13% and
90.96%, respectively. In terms of performance, the nearest
neighbor was the faster method, with a median evaluation
time of 229.82 µs. Considering that all methods presented a
good evaluation time, which makes all of them suitable for
interactive use, precision was assumed to be the most im-
portant criterion to guide the method selection. Therefore,
the main conclusion of this work is that the SVM technique
is the best recognition method among the selected ones, in
a scenario composed by finger-flexure patterns, normalized

and calibrated data, and heterogeneity-oriented dataset par-
titioning.

As future work, the instrumented data7 can be used as in-
put for other classifiers, allowing a comparison between the
results obtained through these classifiers and the results pre-
sented on this paper. The visual data, in turn, can be used
as an input for visual-based gesture recognition techniques,
aiming to identify the best classifiers for this kind of in-
terface. Finally, the SVM-based classifier (which presented
the best results) can be validated through its integration to a
real application, like GIL-Gesture Interaction Layer, a com-
ponent of the Cyclops 3D Framework (a generic interac-

7http://www.lapix.ufsc.br/index.php/gil-gesture-interaction-layer.

http://www.lapix.ufsc.br/index.php/gil-gesture-interaction-layer
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tive visualization and manipulation framework for three-
dimensional medical environments) [29, 30].
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