
J Braz Comput Soc (2010) 16: 133–146
DOI 10.1007/s13173-010-0008-0

O R I G I NA L PA P E R

On the benefits of quantification in AspectJ systems

Marco Tulio Valente · Cesar Couto · Jaqueline Faria ·
Sérgio Soares

Received: 13 November 2009 / Accepted: 13 April 2010 / Published online: 7 May 2010
© The Brazilian Computer Society 2010

Abstract In this paper, we argue that the most favorable
uses of aspects happen when their code relies extensively on
quantified statements, i.e., statements that may affect many
parts of a system. When this happens, aspects better con-
tribute to separation of concerns, since the otherwise dupli-
cated and tangled code related to the implementation of a
crosscutting concern is confined in a single block of code.
We provide in the paper both qualitative and quantitative ar-
guments in favor of quantification. We also propose two new
metrics to capture in a simple way the amount of quantifica-
tion employed in the aspects of a given system. Finally, we
describe an Eclipse plugin, called ConcernMetrics that esti-
mates the proposed metrics directly from the object-oriented
code of an existing system, i.e., before crosscutting concerns
are extracted to aspects. Our main motivation is to help de-
velopers and maintainers to decide in a cost-effective way if
it is worthwhile to use aspects in their systems.

Keywords Aspect-oriented programming · AspectJ ·
Quantification · Separation of Concerns · Metrics ·
Refactoring

M.T. Valente (�) · C. Couto
Department of Computer Science, UFMG, Belo Horizonte, Brazil
e-mail: mtov@dcc.ufmg.br

C. Couto
e-mail: cesarfmc@dcc.ufmg.br

J. Faria
Institute of Informatics, PUC Minas, Belo Horizonte, Brazil
e-mail: jaquefari@gmail.com

S. Soares
Informatics Center, UFPE, Recife, Brazil
e-mail: scbs@cin.ufpe.br

1 Introduction

Aspect-oriented programming (AOP) targets a relevant
problem in software engineering: the modularization of
crosscutting concerns [26]. In order to tackle this problem,
AOP extends traditional programming paradigms, such as
procedural and object-oriented, with powerful abstractions.
For example, AspectJ—the most mature aspect-oriented
language—extends Java with new modularization abstrac-
tions, including join points, pointcuts, advices, and as-
pects [27]. In AspectJ, an aspect defines a set of pointcut de-
scriptors that matches well-defined points in the program ex-
ecution (called join points). Advices are anonymous meth-
ods implicitly invoked before, after, or around join points
specified by pointcuts.

Despite the increasing number of qualitative and quan-
titative assessments of AOP [2, 15, 17, 20, 24], there is still
no consensus on the impact and the real benefits of using
aspects—as proposed by AspectJ—to modularize crosscut-
ting concerns [21, 43, 44]. In this paper, we contribute to
such assessment efforts by emphasizing the benefits of a
well-known characteristic of AOP: the notion of quantifi-
cation [18]. This notion is used to designate statements that
have effect at several parts of the code. We argue that one
of the most favorable uses of aspects happen when their
code relies extensively on quantified statements. When this
happens, aspects better contribute to separation of concerns,
since the otherwise duplicated and tangled code related to
the implementation of a crosscutting concern is confined in
a single block of code.

We start by providing qualitative arguments about the
benefits of quantification in terms of comprehensibility,
changeability, and independent development. Next, in or-
der to strengthen such arguments, we evaluate the aspect-
oriented versions of two medium-sized systems using a suite

mailto:mtov@dcc.ufmg.br
mailto:cesarfmc@dcc.ufmg.br
mailto:jaquefari@gmail.com
mailto:scbs@cin.ufpe.br

134 J Braz Comput Soc (2010) 16: 133–146

of separation of concerns metrics, including concern diffu-
sion over components (CDC) and concern diffusion over op-
erations (CDO) [20, 22, 41]. The results of this quantitative
comparison have shown that quantification leads to better
separation of concerns.

Based on the lessons learned in the mentioned case stud-
ies, we propose two new metrics, called Quantification De-
gree (QD) and Scattering Reduction (SR) that express in a
simple way the amount of quantification employed in the as-
pects of a given system. We describe in details the concern
model and the rationale behind these metrics. We also ana-
lyze their application in the aspect-oriented versions of three
systems.

Finally, we describe an Eclipse plugin, called Concern-
Metrics that estimates QD and SR metrics directly from the
object-oriented code of an existing system, i.e., before even-
tual crosscutting concerns have been extracted to aspects.
The goal is to provide developers and maintainers with ear-
lier feedback about the gains that would be achieved if they
decide to use aspects in their systems. This feature distin-
guishes ConcernMetrics from other tools already proposed
to calculate AOP-related metrics. In general, such tools op-
erate directly over the aspect-oriented code, i.e., they require
developers to implement the aspects to then provide quan-
titative information about the eventual benefits achieved in
this implementation.

The remainder of this paper is organized as follows. Sec-
tion 2 illustrates the use of quantified statements in two
medium-sized systems (JAccounting and JSpider). It also in-
cludes a quantitative evaluation about the benefits achieved
by aspects in such systems. Section 3 describes the QD and
SR metrics and provides examples about their application.
In Sect. 4, we present the ConcernMetrics tool. Section 5
covers related work. Section 6 concludes the paper and out-
lines future research lines.

2 Motivating systems

In order to support our claims, we will first rely on two
medium-sized AspectJ systems: JAccounting1 and JSpider.2

JAccounting is a Web-based business accounting system that
automates invoicing, bills, and accounts handling. JSpider is
a Web robot engine that supports downloading and valida-
tion of web pages. The aspect-oriented version of both sys-
tems have been independently developed by Binkley et al.,
in order to illustrate the application of aspect-oriented refac-
torings, i.e., step-by-step transformations that prescribe how
to modularize crosscutting concerns [6, 7]. Furthermore, the

1http://jaccounting.dev.java.net.
2http://j-spider.sourceforge.net.

aspects implemented in the mentioned systems make oppo-
site uses of quantification. In JAccounting, quantified state-
ments are widely used in order to modularize transaction
handling concerns. On the other hand, the aspectization of
the logging concern in JSpider makes a minimal use of quan-
tification.

First, we illustrate the use of quantified statements in the
JAccounting and JSpider systems. Next, we assess the ben-
efits of quantification in such systems, using a suite of sepa-
ration of concerns metrics. Such metrics are closely related
to modularity, which influences comprehensibility, change-
ability, and independent development [39].

2.1 JAccounting

Figure 1 presents the transaction handling idiom imple-
mented in the original version of JAccounting.3 This idiom
is used in several parts of the system, tangled with its core
logic. It prescribes that developers need to start a transac-
tion context before performing any database operation. Af-
ter such operations, they must issue a commit (in case of
success) or a rollback (in case of failures).

In the aspect-oriented version of JAccounting, the pre-
sented transaction handling code has been removed from the
system’s classes and moved to the aspect described in Fig. 2
(for the sake of clarity, we have not shown the pointcut de-
scriptors in this figure). This aspect illustrates the benefits of
quantification. With a small number of quantified statements
(or advices in AspectJ’s terminology), developers have been
able to modularize the described transaction handling idiom.

In Fig. 2, the transaction concern has been implemented
by a “general aspect,” i.e., an aspect that implements such
concerns in the whole system. Basically, the abstraction
provided by this aspect was possible because the transac-
tion concern has a homogeneous implementation, i.e., the
same statements are used to provide transactional behav-
ior throughout the system [13]. It is also worth to men-
tion that an equivalent form of abstraction is the key benefit
provided by traditional modularization abstractions. For ex-
ample, procedures and functions abstract out computations
that are needed in many parts of a system. Also, in object-
oriented programming, inheritance allows developers to im-
plement in superclasses identical methods required in sub-
classes.

2.2 JSpider

As in several other systems, logging in JSpider is a cross-
cutting concern, requiring developers to call methods from

3By transaction handling idiom, we mean a pattern expected to be pre-
sented at any transaction handling implementation [42].

http://jaccounting.dev.java.net
http://j-spider.sourceforge.net

J Braz Comput Soc (2010) 16: 133–146 135

tx= sess.beginTransaction(); // starts a transaction
try {
... // database operations

}
catch (...) { // handles database exceptions
if (tx != null) {

tx.rollback(); // performs a rollback
tx= null;

}
}
finally {
if (tx != null) tx.commit(); // commits

}

Fig. 1 Transaction handling in the original JAccounting implementation

aspect TransactionManagement {
...
// pointcut p0 captures when database sessions must be opened
after(): p0() {

tx = sess.beginTransaction();
}

// pointcut p1 captures when database exceptions must be handled
before(): p1() {

if (tx != null) {
tx.rollback(); tx= null;

}
}

// pointcut p2 captures when database sessions must be closed
before(): p2() {

if (tx != null) tx.commit();
}

}

Fig. 2 Aspect that modularizes transaction handling in JAccounting

the logging API in several parts of the system. For exam-
ple, Fig. 3 describes the logging calls performed in one
of the classes of the system. Although invoking the same
method, the presented calls have different strings as argu-
ments, which is sufficient to force the logging concern to
have a heterogeneous implementation, i.e., different state-
ments (one for each string argument) are needed to provide
logging behavior throughout the system [13]. As a conse-
quence, developers cannot extract and merge the logging
calls in a single or in a small number of advices. In fact,
when using AspectJ to modularize logging in JSpider, the
190 logging calls that are used in the system have been refac-
tored to 176 advices. Thus, the extracted advices have a re-
duced degree of quantification, i.e., they affect a small num-
ber of locations of the base program (in most cases, just one
location).

It can be argued that the AO implementation has mod-
ularized the logging calls, in the sense that they have been
removed from the underlying system and moved to a sin-

gle aspect. However, the refactored (aspectized) code does

not present clear advantages, in terms of comprehensibil-

ity, changeability, and independent development [39], when

compared with the original code. Comprehensibility is im-

pacted by the fact that the extracted advices are tightly cou-

pled to their associated join points in the base program. For

example, in order to understand the motivation behind each

of the messages presented in Fig. 3, developers should re-

fer to the OO code. On the other hand, by not being tangled

with the extracted concern, the base code is clearer, there-

fore, more comprehensible. Changeability is also not con-

siderably increased. For example, a change in the name of

the method that handles the logging message impacts 176

points of the code in the AO version and 190 locations in the

OO version. Finally, independent development is also ham-

pered, since the logging messages are inherently dependent

from the structure and the evolution of the OO code.

136 J Braz Comput Soc (2010) 16: 133–146

log.info("Loading " + pluginCount + " plugins.");
...
log.info("Loading plugin configuration ’" + pluginInstance + "’...");
...
log.info("Plugin class ... not found");
.....
log.info("Plugin uses local event filtering");
...
log.info("Plugin not configured for local event filtering");
...
log.info("Plugin Name : " + plugin.getName());

Fig. 3 Logging calls in the original JSpider implementation

Table 1 Information about the AO versions

JAccounting JSpider

Aspects 1 1

JPS 44 190

Advices 3 176

2.3 Quantitative evaluation

In order to strengthen our previous arguments in favor of
quantification, this section compares the OO and AO ver-
sions of both JAccounting and JSpider from a quantitative
perspective. Table 1 starts out by presenting relevant infor-
mation about the AO versions of both systems, including in-
formation such as number of aspects, advice, and join point
shadows (JPS). JPS are the program elements to which a
given concern is mapped.

The following metrics have been considered in the study
[20, 22, 41]:

Concern Lines of Code (CLC) This metric counts the num-
ber of lines of code whose main purpose is to contribute
to the implementation of a concern (excluding comments,
blank lines, and import statements) [14]. In the OO ver-
sions, CLC counts basically the method calls that support
the considered crosscutting concerns. On the other hand, in
the AO versions, the metric counts the size of the extracted
aspects, in terms of lines of code (including pointcut de-
scriptors, advice signatures, and advice implementations).
Table 2 presents the results of applying this metric to JAc-
counting and JSpider. The results are aligned with our cen-
tral argument in this paper. In JAccounting, quantification
has contributed to reduce in 32% the CLC value (from 105
LOC to 72 LOC). On the other hand, the minimal amount of
quantification employed in JSpider explains the tremendous
increase of 884% in the CLC metric result (from 244 LOC
to 2400 LOC). Basically, this difference is explained by the
significant number of extra lines dedicated to pointcut de-
scriptors and advice signatures, as illustrated in Fig. 4. In

Table 2 Metrics

Metrics JAccounting JSpider

OO AO % OO AO %

CLC 105 72 −32% 244 2400 +884%

CDO 11 7 −36% 108 243 +125%

CDC 10 3 −70% 39 3 −92%

order to modularize a single logging call (line 6), six extra
lines of code have been required: four lines to declare the
pointcut (lines 1–4) and two lines to delimit the advice body
(line 5 and line 7).4

Concern Diffusion over Operations (CDO) This metric
counts the number of methods and advices whose main pur-
pose is to contribute to the implementation of a concern
and the number of other methods and advices that access
them [41]. As shown in Table 2, CDO results reflect the
benefits engendered by quantification. Particularly, the CDO
value in JAccounting has decreased 36% (from 11 in the OO
version to 7 in the AO version). On the other hand, JSpider’s
CDO has had a significant increase of 125% (from 108 in the
OO version to 243 in the AO version). This increase was ex-
pected due to the reduced amount of quantification observed
in JSpider’s aspects, where every logging call have been just
moved from one location to another in the system (i.e., from
a method to an advice), as described in Sect. 2.2. Moreover,
in the OO version, CDO is increased by only one in case
of methods whose body contains multiple logging calls. On
the other hand, in the AO version such calls are implemented
in different advices. For this reason, CDO increases by the
number of such advices.

4This figure is a verbatim copy of the original code. One can argue that
the pointcut could have been specified in a single line of code, thus
reducing the CLC value. However, we believe this line break layout
has been adopted to increase readability. It is also important to clarify
that to measure CLC we have not made any editing in the source code.

J Braz Comput Soc (2010) 16: 133–146 137

1: pointcut p_27(DBUtil _this, SQLException e):
2: this(_this)
3: && execution(void DBUtil.sqlException(SQLException))
4: && args(e);
5: before(DBUtil _this, SQLException e): p_27(_this, e) {
6: _this.log.error("SQL Exception during JDBC Connect", e);
7: }

Fig. 4 Example of pointcut descriptor and advice implementation in JSpider

Concern Diffusion over Components (CDC) This metric
counts the number of classes and aspects whose main pur-
pose is to contribute to the implementation of a concern
and the number of other classes and aspects that access
them [41]. Table 2 presents the results of applying CDC to
JAccounting and JSpider. The results show that aspects have
contributed to decrease CDC in both systems. The reason
is clear, since the crosscutting code has been confined in a
small number of aspects.

From the presented quantitative assessment, we can ex-
pect that the higher the quantification, the lower the lines of
code related to the implementation of crosscutting concerns
(CLC) and the diffusion of concerns over operations (CDO).
However, quantification does not have an impact in the dif-
fusion of concerns over components (CDC). In other words,
quantification does not contribute to reduce the number of
aspects required in the aspectization of a given system, but
it contributes to reduce the number of advices and conse-
quently the size of such aspects.

3 Quantification metrics

Based on the experience with the mentioned case studies,
we describe in this section two metrics specifically designed
to measure the benefits of quantification in AspectJ systems.
First, we describe the concern model our quantification met-
rics are based on (Sect. 3.1). Next, we define the proposed
metrics (Sect. 3.2) and give some examples of their applica-
tion (Sect. 3.3).

3.1 Concern model

We have reused the concern model proposed by Eaddy et
al. to correlate crosscutting concerns to defects [14]. This
model assumes that concerns are logically organized into a
tree hierarchy. For example, in the JAccounting case study,
transaction handling is a concern that includes the follow-
ing child concerns: starting, committing, and rollbacking a
transaction (Fig. 5). In the JSpider’s concern model, logging
has the following child nodes: generating debug, error, fatal,
info, or warning messages (Fig. 6).

The quantification metrics target only concerns that rep-
resent leafs on this tree, i.e., concerns that do not have

Fig. 5 Concern model for JAccounting’s transaction concern

Fig. 6 Concern model for JSpider’s logging concern

child (as starting a transaction or generating a debug mes-
sage). Since our main intention is to measure the physical
(i.e., source code based) amount of quantification achieved
when using aspects, it is not reasonable to consider con-
cerns that have conceptual differences. In other words, if two
concerns are not atomic (i.e., if they correspond to internal
nodes in the concern model), we should not expect their im-
plementation to occur in a single quantified statement. For
example, we should not expect all transaction handling op-
erations to be confined in a single advice body. However, it
is perfectly desirable to have rollback related concerns im-
plemented in a single block of code.

Moreover, we consider that concerns can be mapped to
static program elements (i.e., nodes of the abstract syntax
tree of the target program). In other words, we assume that
there is a relation that maps nodes from the concern model
to nodes of the AST of the target program. For example, a
rollback concern can be mapped to the AST nodes where a
rollback operation must be triggered. According to this de-
finition, a crosscutting concern is a concern that is mapped
to multiple program elements [14]. In order to follow As-
pectJ terminology, we call join point shadows the program
elements that a given concern is mapped to [23].

138 J Braz Comput Soc (2010) 16: 133–146

3.2 QD and SR metrics

Suppose that the implementation of a crosscutting concern
C represented as a leaf node in our concern model requires
the instrumentation of jps join point shadows of the base
program. Also, suppose that adv advices have been used to
implement C in an AspectJ based system.5 Then we first
calculate the following ratio:

Number of advices to implement C

Number of join point shadows instrumented by such advices

= adv

jps

Regarding this ratio, the best scenario happens when the
concern is modularized in a single advice body that affects
the jps required join point shadows. On the other hand, the
worst case happens when jps advices are required to instru-
ment the jps required join point shadows. Therefore, the de-
scribed ratio is in the interval [1/jps,1]. In order to have a
zero value for the worst case, we must subtract the previous
ratio from 1:

1 − adv

jps

This new ratio is in the interval [0,1 − (1/jps)]. Finally,
in order to transpose the ratio to the interval [0,1], we must
normalize the result considering its maximum value, which
is equal to 1 − (1/jps). The result is the following formula
for the proposed quantification degree (QD) metric:

QD(C) = 1 − adv
jps

1 − 1
jps

= jps − adv

jps − 1
, jps > 1

In this formula, C is a concern that has been implemented
using adv advices affecting a total of jps join point shadows
of the object-oriented code.

As we can observe, QD(C) ranges from 0 (worst case)
to 1 (best case). The worst case happens when jps = adv,
i.e., each implemented advice affects a single locus of the
base program. In the best case, we have the maximal benefit
of quantification, i.e., a single advice (adv = 1) instruments
all the static locations of the base program where the concern
C is required.

In the QD formula, the numerator (jps − adv) measures
the benefits of quantification in terms of scattering reduc-
tion. In OO implementations, we will need to place code

5Since it is based on the number of advices, this first definition aims to
evaluate a particular aspect-oriented implementation. Thus, it is possi-
ble to have another implementation for the same system with different
values for the proposed metrics.

related to the concern C in jps join point shadows. In AO
implementations, it is possible to confine this code to adv
advices (where jps > 1 and adv ≥ 1).6 In other words, us-
ing Java the concern will be scattered along jps locations of
the base program; using AspectJ, the scattering is reduced
to adv advices. Therefore, we can define the Scattering Re-
duction (SR) metric in the following way:

SR(C) = jps − adv

and based on SR(C) the formula for QD(C) can be rewritten
to

QD(C) = SR(C)

jps − 1
, jps > 1

It is important to state that we cannot affirm the con-
cern is considered homogeneous if it has QD higher than a
predefined value or heterogeneous otherwise. There is no
such value. QD defines a homogeneity spectrum, i.e., if
QD(C) = 1, the concern is homogeneous, and if QD(C) = 0,
the concern is heterogeneous. The values between 0 and 1
will be an indicative, supporting developers’ decisions.

3.3 Examples

In this section, we discuss the application of our metrics in
five examples (including three real AspectJ systems).

Example 1 Supposing a concern C mapped to 20 joint point
shadows, Fig. 7 shows the possible values that QD can as-
sume, when the number of advices used to implement C

ranges from 1 to 20. As we can observe in this figure, QD has
the following properties: (a) it is a ratio-scale value; (b) its
value is normalized between 0 and 1; and (c) it is unitless.

Example 2 QD just indicates the degree of quantification
employed in the aspectization of a given concern (consider-
ing the maximal possible degree). For example, suppose the
hypothetical systems S1 and S2—and associated concerns
C1 and C2—described in Table 3. In both cases, QD = 0.5.
This value means that the number of extracted advices is
exactly the average between the minimal and the maximal
number of advices that could be employed in these sys-
tems. For example, in system S1, the best scenario would
include only one advice and the worst scenario would re-
quire 101 advices to instrument all program locations re-
quiring the execution of code related to concern C1. Since
51 advices have been effectively implemented in this case,
QD(C1) = (101 − 51)/100 = 0.5. Similarly, in system S2,
QD(C2) = (11 − 6)/10 = 0.5.

6In this formula, jps should be greater than one, since with only one jps
the concern is well modularized and, therefore, it is not a crosscutting
concern.

J Braz Comput Soc (2010) 16: 133–146 139

Fig. 7 QD values (assuming a concern mapped to 20 join point shad-
ows)

Table 3 Comparing QD and SR values

System Concern jps adv SR QD

S1 C1 101 51 50 0.5

S2 C2 11 6 5 0.5

However, in system S1 quantification has contributed to
reduce from 101 to 51 the number of program locations
requiring the presence of code related to concern C1, i.e.,
SR(C1) = 101 − 51 = 50. On the other hand, in system S2
quantification has contributed to reduce from 11 to 6 the
number of program locations requiring the presence of C2
related code, i.e. SR(C2) = 11 − 6 = 5.

Therefore, despite having the same QD values, aspects
provide more benefits in the S1–C1 case than in S2–C2. In
the former case, aspects have saved the insertion of code in
50 program locations; in the later case, they have precluded
the implementation of code in just 5 program locations. In
summary, when assessing the benefits of quantification, it is
important to consider both QD and SR metrics. QD gives a
ratio-based value regarding the best possible use of aspects
in a particular system/concern scenario; SR informs the ab-
solute number of program locations where maintainers will
not need to insert crosscutting code in case they decide to
rely on aspects.

Example 3 (JAccounting) As described in Sect. 2.1, trans-
action handling in JAccounting can be decomposed in three
atomic crosscutting concerns: starting a transaction context,
committing a transaction, and rollbacking a transaction. Ta-
ble 4 describes the QD and SR values for these concerns.

In line with the results from the case study described in
Sect. 2, the calculated QD values show that JAccounting’s
AO version has been largely based on quantified statements.
The three implemented advices have achieved the maximum
possible amount of quantification (QD = 1). Furthermore,

Table 4 JAccounting’s QD and SR

Concern jps adv SR QD

begin transaction 15 1 14 1

commit 15 1 14 1

rollback 14 1 13 1

Table 5 JSpider’s QD and SR

Concern jps adv SR QD

debug(Object) 45 44 1 0.02

debug(Object, Throwable) 12 12 0 0.00

error(Object) 12 11 1 0.09

error(Object, Throwable) 68 68 0 0.00

fatal(Object, Throwable) 1 1 0 0.00

info(Object) 44 38 6 0.14

warn(Object) 2 2 0 0.00

aspects have removed the need of implementing code re-
lated to starting a transaction from 14 static locations of the
base program (SR = 14). The same value was obtained for
committing a transaction. Finally, for rollbacking, SR = 13.

Example 4 (JSpider) Logging in JSpider is implemented
using Log4J7, a popular logging package for Java. In
Log4J, logging messages are categorized according to some
developer-chosen criteria and logging requests are made by
invoking printing methods from a Logger instance. The
provided methods are debug, info, warn, error, and
fatal. Table 5 presents the QD and SR values for this con-
cern.

As can be observed, the calculated QD values have con-
firmed that the AO version uses very few quantified state-
ments, since the values are zero or very close to zero. In
other words, such values express the way that advices are
used in JSpider’s aspect-oriented version. In most cases, log-
ging calls have just been moved from methods to classes, in
an one-to-one basis.

Example 5 (JHotDraw) JHotDraw is an object-oriented
framework for 2D graphics.8 The system has been initially
proposed as a “design exercise” to demonstrate the appli-
cation of design patterns in a real application. Later, it has
also been used as a case study in several papers about AOSD
[1, 6, 34]. Finally, some concerns of the system have been
refactored to aspects by Marin et al. [35], leading to a ver-
sion called AJHotDraw.9 In this example, we have calcu-

7http://logging.apache.org/log4j.
8http://www.jhotdraw.org, version v.54b1.
9http://sourceforge.net/projects/ajhotdraw.

http://logging.apache.org/log4j
http://www.jhotdraw.org
http://sourceforge.net/projects/ajhotdraw

140 J Braz Comput Soc (2010) 16: 133–146

Fig. 8 Concern map and the metrics estimated for JSpider’s logging concern

Table 6 JHotDraw’s QD and SR

Concern jps adv SR QD

fireSelectionChanged() 4 1 3 1

setUndoActivity(Undoable) 13 2 11 0.92

checkDamaged() 28 15 13 0.48

lated the proposed QD and SR metrics for three methods
related to different crosscutting concerns: fireSelec-
tionChanged (that is part of the figure selection concern),
setUndoActivity (that is part of the undo concern), and
checkDamaged (that is part of the command concern). We
have chosen such methods by comparing the OO and AO
versions of the system. In the AO version, they are called by
code that resides in advices.

Table 6 presents JHotDraw’s QD and SR values. As can
be observed, for two methods we have found high values for
QD: fireSelectionChanged (QD = 1) and setUn-
doActivity (QD = 0.92). On the other hand, 15 advices
have been implemented to modularize the existent 28 calls to
checkDamaged. Therefore, QD = 0.48, which shows that
intermediary QD values can be observed in practice (since
in the other examples the values are usually in the extremes
of the scale).

4 ConcernMetrics tool

We have implemented a prototype tool, called Concern-
Metrics that estimates both conventional separation of con-
cern metrics and the quantification metrics proposed in this
paper without requiring developers to implement aspects.
Our main motivation is to help developers and maintainers
to decide in a cost-effective way if it is worthwhile to use
aspects in their systems.

The implemented tool reuses the interface provided by
the ConcernMapper Eclipse-based plugin, proposed by Ro-
billard et al. to logically reorganize the modularity of a soft-
ware system [40]. In fact, the ConcernMapper allows de-
velopers to build a logical model of the concerns of a soft-
ware system that is similar to our concern model.10 Basi-
cally, they just need to drag-and-drop methods and fields as-
sociated to crosscutting concerns to a tree-like data structure
called concern map. This structure can then be used to rea-
son about concerns without requiring changes in the source
code.

Our ConcernMetrics tool leverages the ConcernMapper
plugin by supporting the estimation of CDC, CDO, QR,
and SR metrics directly from the information available in
the concern map. In order to start using the plugin devel-
opers must first create a concern map and drag-and-drop
to it methods previously classified as presenting a cross-
cutting behavior (possibly, using an aspect mining tool
[9, 25]). For example, in the case of the logging concern
in JSpider, developers must drag-and-drop to the concern
map methods such as debug(Object,Throwable),
debug(Object), error(Object), etc. (as shown in
Fig. 8).

4.1 Implementation

In order to calculate the separation of concerns and quantifi-
cation metrics from the information available in the concern
map, the ConcernMetrics tool relies on the ASM framework
for Java bytecode manipulation and analysis.11 Using this
framework, the bytecode of the system is transversed look-
ing for calls to the methods included in the concern map. In
order to estimate CDC, CDO, QR, and SR in case aspects

10The main difference is that ConcernMapper assumes a flat concern
model, i.e., it is not possible to define sub-concerns, as proposed in
Sect. 3.
11http://asm.objectweb.org.

http://asm.objectweb.org

J Braz Comput Soc (2010) 16: 133–146 141

are used to modularize the mapped concerns, the crucial de-
cision is to identify the method calls that can be extracted
to the same advice. For this purpose, the following decision
algorithm is used:

Suppose the following calls to method m: t1.m(arg1)

and t2.m(arg2), where ti denotes the target and argi

denotes the argument of the calls (i = 1 or i = 2).
These calls can be moved to a single advice when the
following condition holds:

1. In case of static methods, t1 and t2 must denote
the same class (or classes having a common super-
class). In case of dynamic methods, t1 and t2 must
denote fields having the same type (or that are de-
rived from a common type).

2. arg1 and arg2 are the same constant value or fields
having the same type (or that are derived from a
common type).

Suppose the calls to start and log in the following
classes:
class A { class B {

Transaction tx; Transaction tx;

void foo(){ void bar(){

tx.start(1); tx.start(1);

....

Logger.log("finished"); Logger.log("panic");

....

} }

} }

In case aspects are used in this system, the start calls
can be moved to a single advice because: (i) their target
are fields having the same type (Transaction); (ii) their
arguments are the same integer constant (1). On the other
hand, the log calls should be extracted to different advices,
because although they rely on a static method of the same
class (Logger), their arguments are distinct strings.

4.2 Examples

In order to evaluate the proposed decision algorithm, we
have applied the ConcernMetrics tool to our three case stud-
ies: JAccounting, JSpider, and JHotDraw. In general, the re-
sults suggested by the ConcernMetrics have matched the
real values calculated from the AO versions of these sys-
tems. In case the results have not matched, they were due to
new requirements implemented by the AO code or to miss-
ing calls in the AO versions. The details are discussed in the
following examples.

Example 6 (JAccounting) Table 7 presents the SR and QD
values calculated from the JAccounting’s AO version and
the values estimated by the ConcernMetrics directly from
the object-oriented version of the system.

Since the ConcernMetrics has provided precisely the
same values measured in the aspect-oriented version of

Table 7 SR and QD for JAccounting’s transaction handling concern
(AO = value measured for the AO version; CM = value estimated by
the ConcernMetrics)

Concern AO CM

SR QD SR QD

beginTransaction 14 1 14 1

commit 14 1 14 1

rollback 13 1 13 1

Table 8 SR and QD for JSpider’s logging concern (AO = value mea-
sured for the AO version; CM = value estimated by the Concern-
Metrics)

Concern AO CM

SR QD SR QD

1 debug(Object) 1 0.02 4 0.09

2 debug(Object,Throwable) 0 0.00 0 0.00

3 error(Object) 1 0.09 1 0.08

4 error(Object,Throwable) 0 0.00 0 0.00

5 fatal(Object,Throwable) 0 0.00 0 0.00

6 info(Object) 6 0.14 6 0.14

7 warn(Object) 0 0.00 0 0.00

the system, we can conclude that it has been able to in-
fer the same design decisions made by the developers of
JAccounting-AOP.

Example 7 (JSpider) Table 8 presents the SR and QD val-
ues calculated from the JSpider’s AO version and the values
estimated by the ConcernMetrics from the object-oriented
version of the system.

As we can observe in this table, the values indicated by
the ConcernMetrics have matched the real AO values in five
out of seven methods considered in our evaluation (more es-
pecifically, methods 2, 4, 5, 6, and 7). The differences ob-
served in the remainder methods are explained in the fol-
lowing way:

• The AO version misses some logging messages, i.e., there
are logging messages that exist in the OO version, but are
not implemented in any advice from the AO version. For
example, there are 46 calls to method debug(Object)
in the OO version analyzed by the ConcernMetrics tool.
However, in the AO version, only 45 from such calls are
reinserted in the OO code by the implemented advices.
Due to the high number of logging messages in JSpider,
we believe the developers of the AO version have forgot
to extract some messages to the implemented aspects.

• Probably to enhance the quality of the logging implemen-
tation, the AO version includes new logging messages. In
other words, there are logging messages in the AO ver-
sion that do not exist in the original OO code. For exam-

142 J Braz Comput Soc (2010) 16: 133–146

class EventDispatcherImpl {
public EventDispatcherImpl (...) {
...
log.debug("EventFilter for engine events = " + ...);
log.debug("EventFilter for monitor events = " + ...);
log.debug("EventFilter for spider events = " + ...);
...

}

Fig. 9 Consecutive calls to debug in JSpider

Table 9 SR and QD for JHotDraw (AO = value measured for the AO
version; CM = value estimated by the ConcernMetrics)

Concern AO CM

SR QD SR QD

1 fireSelectionChanged() 2 0.67 3 1

2 setUndoActivity(Undoable) 1 0.13 11 0.92

3 checkDamaged() 12 1 13 0.48

ple, two new calls to error(Object) have been im-
plemented in the AO version.

• In some situations, there are consecutive calls to the
same logging method in the original OO code. For ex-
ample, Fig. 9 shows three consecutive calls to de-
bug(Object) in the constructor from class Event-
DispatcherImpl. The metrics estimation algorithm
employed by ConcernMetrics consider that consecutive
calls to methods included in the concern map can be ex-
tracted to the same advice. However, in the particular case
from Fig. 9, JSpider’s developers have decided to imple-
ment such calls in different advices.

Example 8 (JHotDraw) Table 9 presents the SR and QD
values calculated from the AJHotDraw—JHotDraw’s AO
version—and the values estimated by the ConcernMetrics
directly from the OO version of the system.

The differences observed in the results are explained as
follows. The calls to fireSelection could have been
confined in a single advice (instead AJHotDraw’s design-
ers have chosen to implement them in two advices). In the
case of setUndoActivity, AJHotDraw’s designers have
left four calls scattered in the OO code (i.e., such calls have
not been extracted to aspects). Finally, from the 28 calls to
checkDamaged that exist in the OO code, only 12 calls
have been moved to aspects.

4.3 ConcernMetrics limitations

In order to evaluate the benefits of quantification, we just
need to consider dynamic crosscutting concerns, i.e., cross-
cutting concerns that can be modularized by means of ad-
vices [27]. Moreover, the ConcernMetrics tool assumes that

(dynamic) crosscutting concerns always correspond to sin-
gle method calls. Therefore, concerns associated to other
statements (assignments, loops, etc.) or concerns associated
to multiple statements must be first extracted to a method,
using the Extract Method refactoring [19]. However, we
believe that requiring the previous application of Extract
Method in such cases would not represent a fruitless effort.
Even if developers decide to not move to aspects, extracting
methods in most cases contribute to eliminate cloned code
and to increase comprehensibility.

AspectJ only allow aspects to advise well-defined points
in the execution of OO systems. When crosscutting concerns
do not happen in advisable join points, developers usually
need to transform the base program in order to associate
statements implementing crosscutting concerns to static lo-
cations that can be captured by AspectJ’s pointcuts. Usually,
such transformations can be classified as statement reorder-
ing or method extraction [7, 37]. However, the Concern-
Metrics tool just evaluate if it is possible to extract calls as-
sociated to crosscutting concerns to the same advice. It does
not consider if a previous transformation in the base pro-
gram is necessary to enable such extraction. In fact, we have
designed another ConcernMapper extension, called Trans-
formationMapper [38] that provides exactly this informa-
tion. In the future, we have plans to integrate both extensions
in a single tool.

5 Related work

Related work can be arranged in five groups: AOP metrics,
AOP assessments, ConcernMapper Extensions, AOP refac-
torings, and AOP languages and systems.

AOP metrics The separation of concerns metrics used in
Sect. 2 have been proposed by Sant’Anna et al. to evaluate
the benefits of aspects in the implementation of design pat-
terns [20, 41]. They have also shown how to adapt to AOP
classical coupling and cohesion metrics proposed by Chi-
damber and Kemerer (CK) [10]. Ceccato and Tonella have
also refined CK’s metrics and applied them to a small ex-
ample; an AspectJ implementation of the Observer design

J Braz Comput Soc (2010) 16: 133–146 143

pattern [8]. They have proposed a metric called Crosscutting
Degree of an Aspect (CDA) that counts the number of mod-
ules affected by the pointcuts and by the introductions in a
given aspect. However, CDA only provides a coarse-grained
notion about quantification. It neither presents a ratio-based
behavior nor it is associated to a previously defined con-
cern model, as in the case of our QD metric. Zhao and Xu
have proposed a set of metrics to assess cohesion in aspect-
oriented systems [45]. However, the proposed metrics have
not been applied to realistic AspectJ systems.

In order to investigate whether crosscutting concerns
cause defects, Eaddy et al. have proposed two new separa-
tion of concern metrics, called Degree Of Scattering across
Classes (DOSC) and Degree Of Scattering across Methods
(DOSM) [14]. Unlike Garcia’s absolute CDC and CDO met-
rics, DOSC and DOSM consider how the concern’s code
is distributed among the program elements. Particularly,
DOSC and DOSM present a ratio-scale measure, where zero
means “no scattering.”

Herrejon and Apel have proposed a set of metrics to cat-
egorize crosscutting concerns within a spectrum that goes
from homogeneous to heterogeneous [32]. They rely on a
metric called Homogeneity Quotient (HQ) that classifies a
concern as homogeneous when the number of classes that
are crosscut by the pieces of advice in the aspect-oriented
implementation of the concern is equal to the number of
classes that are crosscut by the concern’s advices and inter-
type declarations. According to this metric, transactions in
JAccouting and logging in JSpider are both homogeneous
concerns, since in these systems the defined advice crosscut
all the classes crosscut by the concern. Therefore, different
from our approach the HQ metric does not consider quan-
tification in order to classify a concern as homogeneous or
heterogeneous.

Code Replication Reduction (CRR) is another metric
proposed to evaluate AspectJ systems [2]. Basically, CRR
measures the number of lines of code that could be reduced
by moving scattered and tangled code to aspects. CRR’s
value is calculated by multiplying the number of lines of
each advice and intertype declaration by the number of join
points it affects (minus one). There are two main differences
between CRR and our SR metric. First, CRR denotes the
number of lines of code saved by relying on aspects. On
the other hand, SR counts the number of static program lo-
cations affected by each advice (minus one). Second, CRR
gives a unique and global number for the whole system,
while our SR metric is calculated for individual concerns
previously organized in a hierarchical concern model.

AOP assessments Using their separation of concerns and
adapted CK metrics, Garcia et al. have investigated the use
of aspects in a wide range of domains and systems, including
design patterns [20, 41], exception handling [17], web-based

information systems [29], and software product lines [15].
In general, in each of such empirical studies they have iden-
tified positive and negative effects of using aspects. Inter-
estingly, in most studies the situations where they do not
recommend the use of aspects can be linked to a reduced
degree of quantification. For example, in the empirical study
about exceptions, they mention that when the exception han-
dling code is nonuniform aspects can bring more harm than
good. As another example, in their work about design pat-
terns, they mention that separation of concerns metrics can-
not be considered as the only factor to conclude for the use
of aspects, since it can generate more complicated designs
(as we have observed for example in the JSpider case study).

Kästner, Apel, and Batory have reported their experience
on refactoring features from the Oracle Berkeley DB into
aspects [24]. They have observed that the extracted aspects
in general present a small degree of quantification, i.e., re-
duced number of advices that can affect more than one ex-
ecution point (join point). For example, they mention that
from the 482 extracted advices only 7 advise more than one
joint point. They also mention that most of the defined point-
cuts are tightly coupled to the base program and, therefore,
are particularly fragile to modifications in this program. We
believe that by analyzing the QD and SR metrics reported
by the ConcernMetrics tool, it would be possible to reach
the same conclusions without extracting any piece of advice
from the original object-oriented code.

Apel has analyzed the use of AspectJ in eleven systems,
using metrics such as fraction of classes, interfaces, and as-
pects (CIA), code replication reduction (CRR), code fraction
associated with static and dynamic crosscuts (SDC) etc. [2]
The study has shown that 86% of the considered code is
object-oriented, 12% uses basic crosscutting mechanisms
(intertype declarations or single method extensions), and
only 2% uses advanced crosscutting mechanisms (including
advices that affect whole sets of join points). Since in most
of the evaluated systems AspectJ has been used to extract
heterogeneous features from the source code, the results re-
inforce the conclusions derived from the Oracle Berkeley
DB aspectization.

ConcernMapper extensions ConcernTagger is a Concern-
Mapper extension that computes scattering metrics includ-
ing CDC, CDO, and the previous mentioned DOSC and
DOSM metrics [14]. However, at least in its current ver-
sion, the metrics are measured only for the OO code. On the
other hand, a distinguishing feature of our ConcernMetrics
tool is its ability to infer QD and SR’s values regarding an
eventual aspectization of the code. ConcernMorph is another
ConcernMapper extension designed to detect crosscutting
patterns based on metrics collected directly from the OO
code [16].

144 J Braz Comput Soc (2010) 16: 133–146

AOP refactorings Several researches have investigated
aspect-oriented refactorings, i.e., refactorings that prescribe
how to modularize crosscutting concerns using aspects
[6, 7, 12, 30, 36]. However, they in general do not address
the issue about how to decide when the proposed refactor-
ings are worthwhile.

AOP languages and systems Systems such as AHEAD
[5, 31] and FeatureC++ [4] represent another alternative to
the implementation of heterogeneous concerns, mainly in
the context of feature-oriented programming and collabo-
ration languages [3, 33]. In such systems, heterogeneous
concerns are normally associated to increments in program
functionality. Therefore, they do not present the massive
crosscutting behavior that is observed in concerns such as
logging and transactions. For this reason, AHEAD and Fea-
tureC++ do not support quantification. On the other hand, in
this paper, we restricted our focus to dynamic crosscutting
concerns implemented using AspectJ’s advice and pointcut
abstractions, which are exactly the abstractions that distin-
guish AspectJ from the mentioned systems.

6 Conclusions

In this section, we conclude describing the contributions and
the limitations of our work. We also outline future research
lines.

Contributions We have argued that quantification is the
key mechanism to abstract out computations associated to
crosscutting concerns. Quantification allows developers to
implement in a single advice code required in many static lo-
cations of object-oriented systems. Therefore, quantification
directly tackles the code scattering and tangling problems
that typically characterize crosscutting concerns. In order to
better assess the benefits of quantification, we have proposed
two metrics: quantification degree (QD) and scattering re-
duction (SR). As another contribution of the paper, we have
implemented the ConcernMetrics Eclipse-based plugin that
calculates such metrics without requiring the physical ex-
traction of crosscutting concerns to aspects. The Concern-
Metrics tool has been used to evaluate in advance the bene-
fits of using aspects in three small-to-medium Java systems.
From the best of our knowledge, ConcernMetrics is the first
tool that estimates AOP-related metrics directly from the
object-oriented code. The system is still a research proto-
type. However, its current version is available upon request
from the authors.

Limitations We have decided to do not provide precise
guidelines about when aspects should be employed in a
given system, based on the estimated QD and SR values.

We believe that the final decision should be made by the
developers of the candidate system. The reason is that this
decision usually involves other variables, as the crosscut-
ting concern nature (including its importance, implementa-
tion difficulty, frequency of maintenance, etc.) and the ex-
perience of the development team in aspect-oriented tech-
nologies. Despite this fact, we consider that it is crucial that
developers correlate QD an SR values in order to make this
decision. Since QD is a ratio-based metric, it provides infor-
mation about the gains that would be achieved by using as-
pects with respect to the best possible scenario. On the other
hand, SR provides absolute information about the code re-
duction achieved with aspects.

We have concentrated solely in the aspectization of dy-
namic crosscutting concerns. However, it is important to
mention that AspectJ also provides support to static cross-
cutting mechanisms (a.k.a intertype declarations), which
allow developers to instrument the static structure of an
object-oriented system without changing its source code.
Inter-type declarations can be used to support other pro-
gramming approaches, such as software product lines [11],
feature-oriented programming [5, 33], and collaboration-
based designs [3]. However, such programming approaches
are not the central focus of this paper. Finally, we have con-
centrated on the dynamic crosscutting mechanisms provided
by AspectJ, since it is the most widely used AOP language
nowadays.

A possible side effect of high QD is the pointcut fragility
problem [28]. According to this issue, high degrees of quan-
tification might lead to less stable systems for evolution,
since new code might be inadvertently affected by high QD
pointcuts. On the other hand, AO development tools can mit-
igate this problem, by detecting which parts of the code are
affected by advices and their pointcuts.

Further research We intend to apply the proposed QD and
SR metrics to other studies. We have plans to extend the
ConcernMetrics with support to other metrics. We also have
plans to integrate ConcernMetrics with our previous Trans-
formationMapper tool, which provides information about
OO transformations required to enable the extraction of as-
pects. Finally, in another study, we will aim to address the
(possible) correlation between pointcut fragility and high
QD values.

Acknowledgements This work has been supported by grants from
FAPEMIG and CNPq. We would like to thank David Binkley and Mar-
iano Ceccato for providing us the source code of the aspect-oriented
version of the JSpider and JAccounting systems. The authors also thank
the anonymous reviewers for their valuable comments and suggestions.

J Braz Comput Soc (2010) 16: 133–146 145

References

1. Anbalagan P, Xie T (2007) Automated inference of pointcuts in
aspect-oriented refactoring. In: 29th international conference on
software engineering (ICSE), May 2007

2. Apel S (2010) How AspectJ is used: an analysis of eleven AspectJ
programs. J Object Technol 9(1):117–142

3. Apel S, Batory D (2006) When to use features and aspects: a case
study. In: 5th international conference on generative programming
and component engineering (GPCE), pp 59–68

4. Apel S, Leich T, Rosenmüller M, Saake G (2005) FeatureC++:
on the symbiosis of feature-oriented and aspect-oriented program-
ming. In: 4th international conference on generative programming
and component engineering (GPCE). Lecture notes in computer
science, vol 3676. Springer, Berlin, pp 125–140

5. Batory D (2004) Feature-oriented programming and the AHEAD
tool suite. In: 26th international conference on software engineer-
ing (ICSE), pp 702–703

6. Binkley D, Ceccato M, Harman M, Ricca F, Tonella P (2005) Au-
tomated refactoring of object oriented code into aspects. In: 21st
IEEE international conference on software maintenance (ICSM),
pp 27–36

7. Binkley D, Ceccato M, Harman M, Ricca F, Tonella P (2006) Tool-
supported refactoring of existing object-oriented code into aspects.
IEEE Trans Softw Eng 32(9):698–717

8. Ceccato M, Tonella P (2004) Measuring the effects of software
aspectization. In: 1st workshop on aspect reverse engineering
(WARE 2004)

9. Ceccato M, Marin M, Mens K, Moonen L, Tonella P, Tourwé
T (2005) A qualitative comparison of three aspect mining tech-
niques. In: 13th international workshop on program comprehen-
sion (IWPC), pp 13–22

10. Chidamber SR, Kemerer CF (1994) A metrics suite for object ori-
ented design. IEEE Trans Softw Eng 20(6):476–493

11. Clements P, Northrop LM (2002) Software product lines: practices
and patterns. Addison-Wesley, Reading

12. Cole L, Borba P (2005) Deriving refactorings for AspectJ. In: 4th
international conference on aspect-oriented software development
(AOSD), pp 123–134

13. Colyer A, Clement A (2004) Large-scale AOSD for middleware.
In: 3rd international conference on aspect-oriented software de-
velopment. ACM, New York, pp 56–65

14. Eaddy M, Zimmermann T, Sherwood KD, Garg V, Murphy Gail
C, Nagappan N, Aho AV (2008) Do crosscutting concerns cause
defects? IEEE Trans Softw Eng 34(4):497–515

15. Figueiredo E, Cacho N, Sant’Anna C, Monteiro M, Kulesza U,
Garcia A, Soares S, Ferrari FC, Khan SS, Filho FC, Dantas F
(2008) Evolving software product lines with aspects: an empiri-
cal study on design stability. In: 30th international conference on
software engineering (ICSE), pp 261–270

16. Figueiredo E, Whittle J, Garcia AF (2009) ConcernMorph:
metrics-based detection of crosscutting patterns. In: 7th interna-
tional symposium on foundations of software engineering (FSE),
pp 299–300

17. Filho FC, Cacho N, Figueiredo E, Maranhao R, Garcia A, Ru-
bira C (2006) Exceptions and aspects: the devil is in the details.
In: 14th international symposium on foundations of software en-
gineering (FSE), pp 152–162

18. Filman RE, Friedman DP (2000) Aspect-oriented programming is
quantification and obliviousness. In: OOSPLA workshop on ad-
vanced separation of concerns, October 2000

19. Fowler M, Beck K, Brant J, Opdyke W, Roberts D (1999) Refac-
toring: improving the design of existing code. Addison-Wesley,
Reading

20. Garcia A, Sant’Anna C, Figueiredo E, Kulesza U, de Lucena CJP,
von Staa A (2005) Modularizing design patterns with aspects:

a quantitative study. In: 4th international conference on aspect-
oriented software development (AOSD), pp 3–14

21. Garcia A, Greenwood P, Heineman G, Walker R, Cai Y, Yang HY,
Baniassad E, Lopes CV, Schwanninger C, Zhao J (2007) Assess-
ment of contemporary modularization techniques (ACoM) 2007:
workshop report. SIGSOFT Softw Eng Notes 32(5):31–37

22. Greenwood P, Bartolomei TT, Figueiredo E, Dósea M, Garcia AF,
Cacho N, Sant’Anna C, Soares S, Borba P, Kulesza U, Rashid A
(2007) On the impact of aspectual decompositions on design sta-
bility: an empirical study. In: 21st European conference on object-
oriented programming (ECOOP), pp 176–200

23. Hilsdale E, Hugunin J (2004) Advice weaving in AspectJ. In: 3rd
international conference on aspect-oriented software development
(AOSD), pp 26–35

24. Kastner C, Apel S, Batory D (2007) A case study implementing
features using AspectJ. In: 11th international software product line
conference (SPLC), pp 223–232

25. Kellens A, Mens K, Tonella P (2007) A survey of automated code-
level aspect mining techniques. Trans Aspect-Oriented Softw Dev
4:145–164

26. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Lo-
ingtier J-M, Irwin J (1997) Aspect-oriented programming. In: 11th
European conference on object-oriented programming (ECOOP).
LNCS, vol 1241. Springer, Berlin, pp 220–242

27. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold
WG (2001) An overview of AspectJ. In: 15th European confer-
ence on object-oriented programming (ECOOP). LNCS, vol 2072.
Springer, Berlin, pp 327–355

28. Koppen C, Störzer M (2004) PCDiff: attacking the fragile pointcut
problem. In: European interactive workshop on aspects in software
(EIWAS), September 2004

29. Kulesza U, Sant’Anna C, Garcia A, Coelho R, von Staa A, Lucena
C (2006) Quantifying the effects of aspect-oriented programming:
a maintenance study. In: 22nd IEEE international conference on
software maintenance, pp 223–233

30. Laddad R (2003) Aspect-oriented refactoring. TheServer-
Side.com

31. Liu J, Batory D, Lengauer C (2006) Feature oriented refactoring of
legacy applications. In: 28th international conference on software
engineering (ICSE), pp 112–121

32. Lopez-Herrejon R, Apel S (2007) Measuring and characterizing
crosscutting in aspect-based programs: basic metrics and case
studies. In: 10th international conference on fundamental ap-
proaches to software engineering (FASE), March 2007

33. Lopez-Herrejon R, Batory D, Cook WR (2005) Evaluating sup-
port for features in advanced modularization technologies. In: 19th
European conference on object-oriented programming (ECOOP).
LNCS, vol 3586. Springer, Berlin, pp 169–194

34. Marin M, van Deursen A, Moonen L (2007) Identifying cross-
cutting concerns using fan-in analysis. ACM Trans Softw Eng
Methodol 17(1)

35. Marin M, van Deursen A, Moonen L, van der Rijst R (2009) An
integrated crosscutting concern migration strategy and its semi-
automated application to JHotDraw. Autom Softw Eng 16(2):323–
356

36. Monteiro MP, Fernandes JM (2006) Towards a catalogue of refac-
torings and code smells for AspectJ. Trans Aspect-Oriented Softw
Dev 3880:214–258

37. Nassau M, Valente MT (2009) Object-oriented transformations for
extracting aspects. Inf Softw Technol 51(1):138–149

38. Nassau M, Oliveira S, Valente MT (2009) Guidelines for enabling
the extraction of aspects from existing object-oriented code. J Ob-
ject Technol 8(3):101–119

39. Parnas DL (1972) On the criteria to be used in decomposing sys-
tems into modules. Commun ACM 15(12):1053–1058

146 J Braz Comput Soc (2010) 16: 133–146

40. Robillard MP, Weigand-Warr F (2005) ConcernMapper: simple
view-based separation of scattered concerns. In: OOPSLA eclipse
technology exchange workshop (ETX), pp 65–69

41. Sant’Anna C, Garcia A, Chavez C, Lucena C, von Staa A (2003)
On the reuse and maintenance of aspect-oriented software: an as-
sessment framework. In: 17th Brazilian symposium on software
engineering (SBES), pp 19–34

42. Soares S, Laureano E, Borba P (2002) Implementing distribution
and persistence aspects with AspectJ. In: Proceedings of the 17th
ACM conference on object-oriented programming, systems, lan-
guages, and applications, OOPSLA’02, Seattle, WA, USA, No-
vember 2002. ACM, New York, pp 174–190

43. Steimann F (2006) The paradoxical success of aspect-oriented
programming. In: 21st conference on object-oriented program-
ming systems, languages, and applications (OOPSLA), pp 481–
497

44. Wand M (2003) Understanding aspects: extended abstract. In:
8th international conference on functional programming (ICFP).
ACM, New York, pp 299–300

45. Zhao J, Xu B (2004) Measuring aspect cohesion. In: 7th funda-
mental approaches to software engineering (FASE). Lecture notes
in computer science, vol 2984. Springer, Berlin, pp 54–68

	On the benefits of quantification in AspectJ systems
	Abstract
	Introduction
	Motivating systems
	JAccounting
	JSpider
	Quantitative evaluation
	Concern Lines of Code (CLC)
	Concern Diffusion over Operations (CDO)
	Concern Diffusion over Components (CDC)

	Quantification metrics
	Concern model
	QD and SR metrics
	Examples

	ConcernMetrics tool
	Implementation
	Examples
	ConcernMetrics limitations

	Related work
	AOP metrics
	AOP assessments
	ConcernMapper extensions
	AOP refactorings
	AOP languages and systems

	Conclusions
	Contributions
	Limitations
	Further research

	Acknowledgements
	References

