
Model-Based Evolution of
Collaborative Agent-Based Systems

Shawn A. Bohner1, Denis Gračanin1, Michael G. Hinchey2 and Mohamed Eltoweissy3

1Virginia Tech

Dept. of Computer Science

Blacksburg, VA 24061, USA

2Loyola College in Maryland

Dept. of Computer Science

Baltimore, MD 21210, USA

3Virginia Tech

Dept. of Electrical and

Computer Engineering

Arlington, VA 22203, USA

Abstract

As demands for behaviorally sophisticated software
grow, agent-based systems are increasingly being em-
ployed. Software agents are frequently applied to large,
complex systems that involve interdisciplinary develop-
ment teams. These complex systems have proved to be
challenging to develop and evolve, even for the most
competent software engineers. Taking lessons learned
in other engineering disciplines such as computer and
architectural engineering we investigated a model-based
engineering approach called Model-Driven Architecture
(MDA) to automate, whenever possible, the develop-
ment and evolution of agent-based applications. In our
investigation, we use the Cognitive Agent Architecture
(Cougaar); one of the most mature and sophisticated col-
laborative agent-based architectures. MDA and Cougaar
served as the primary components and implementation
platform for our research. In this paper we present
our approach and demonstrate how MDA is effective
for producing sophisticated agent-based systems. A key
challenge was found in designing a flexible meta-model
framework that would accommodate both top-down do-
main information and bottom-up platform specific con-
structs, as well as the transformations and mappings be-
tween them. We employed a General Domain Application
Model (GDAM) as the platform-independent model layer
and General Cougaar Application Model (GCAM) layer

as the platform specific model respectively. Domain-
level requirements are formulated using a XML Process
Definition Language (XPDL) based graphical editor and
are the refined through a series of model transformations
(via the underlying metamodel) to systematically gener-
ate the agent-based software system. Through an illustra-
tive case-study, we report on the feasibility, strengths and
limitations of the model-based approach as it was inves-
tigated with the Cougaar.

1. INTRODUCTION
As society increasingly depends on software, the size

and complexity of software systems continues to grow

making them progressively more difficult to understand

and evolve. Moreover, the nature of software change

and its concomitant complexity has turned a corner with

the advent of web services, collaborative agent-based

systems, self-healing systems, reconfigurable computing,

and the like. Software complexity has compounded vol-

ume (structure) and interaction (social) properties as the

Internet has enabled software functionality to be deliv-

ered as services. To respond to the sheer volume, and

consequent complexity, the software community has in-

creasingly embraced model-based engineering principles.

Similarly on the operational side, agent systems have

been employed to collaboratively deal with tasking in sys-

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

tems that require very complex behaviors and decisions.

Suffice it to say, these agent-based applications are so-

phisticated, complex, and very hard to develop.

Interdisciplinary development of these systems has

emerged as a way to ensure that relevant requirements are

rendered properly as the abstract models from the prob-

lem domain evolve into increasingly more detailed and

complete ones used to generate software. Development

and maintenance environments must support this inher-

ent part of producing today’s highly integrated and com-

plex computing systems. Software architecture provides a

framework to understand dependencies that exist between

the various components, connections, and configurations

reflected in the requirements. These emergent technolo-

gies provide a reasonable basis for addressing complexity

issues by separating concerns (integration, interoperabil-

ity, decision support, and the like) and allowing agents

to provide the necessary processing. The task orienta-

tion, coupled with intelligent agents, provides a strategic

and holistic environment for designing large and complex

computer-based systems. These systems may support

logistics management, battlefield management, supply-

chain management, to mention but a few.

The Cognitive Agent Architecture (Cougaar) can be

characterized in the same way. Cougaar is an open source,

distributed agent architecture [2], a result of approxi-

mately eight years of development for the Defense Ad-

vanced Research Projects Agency (DARPA) under the

Advanced Logistics Program (ALP) and the Ultra*Log

program [3]. The primary focus of development has been

on very large-scale, distributed applications that are char-

acterized by hierarchical task decompositions, such as

military logistics planning and execution. In addition,

during the last four years, particular attention has been

given to fault tolerance, scalability, and security.

Many of today’s software systems exhibit characteris-

tics that align with agent systems. They are task-oriented

and often adaptive, and may involve autonomic behav-

iors, or engage in collaborative or competitive activi-

ties. These and other aspects make it challenging to de-

velop and evolve agent-based systems in a timely fash-

ion. To address this key challenge, we investigate the Ob-

ject Management Group’s (OMG) Model Driven Archi-

tecture (MDA) approach [6, 17, 24], which aims at sepa-

rating application logic from the underlying technologies

to improve reusability, portability and development pro-

cesses. The underlying premise is that business knowl-

edge should be long-lived, whereas technical concerns are

generally short-lived and limited to a given technology.

MDA provides a means of automating the development

process to a significant degree. Additionally, we examine

how changes to the software system are characterized and

reasoned about in the model-based environment.

In some respects, MDA is an advanced perspec-

tive on well-known essential systems development con-

cepts practiced over the years (albeit frequently practiced

poorly). OMG promotes MDA advocating Unified Mod-

eling Language (UML) as the modeling technology at the

various levels. MDA endeavors to achieve high portabil-

ity, interoperability, and reusability through architectural

separation of concerns; hinging on the long-established

concept of separating the operational system specification

from the details of how that system implements those ca-

pabilities on its respective platform(s). That is, separate

the logical operational models (external view) from the

physical design for platform implementations.

Development of agent-based systems can be thought

of as the evolution of abstract requirements into a concrete

software system. Starting with requirements that must be

refined and elaborated, the system’s evolution is achieved

through a successive series of transformations. For non-

trivial systems, this can be complex, time consuming, and

prone to error as software engineers work together to de-

velop the requisite components, assemble them, and ver-

ify that they meet specifications. MDA, also known as

Model Driven Development [7], represents an emerging

approach for organizing this evolution and its resulting

artifacts. Through a successive series of computationally-

independent, platform-independent and platform-specific

model transformations, MDA facilitates the generation of

software systems. A metamodeling foundation [7] allows

efficient implementation of the transformation process.

The Eclipse tools [13], including the Eclipse Modeling

Framework (EMF), are used here to implement an MDA

framework based on the Cougaar platform.

Figure 1 illustrates our approach and its basic MDA

concepts pertaining to Cougaar applications. Starting

with an often-abstract Computation Independent Model

(CIM) such as a process workflow or functional descrip-

tion, the Platform Independent Model (PIM) is derived

through elaborations and map-pings between the original

concepts and the PIM renderings. Once the PIM is suffi-

ciently refined and sta-ble, the Platform Specific Models

(PSM) are derived through further elaborations and re-

finements. The PSMs are transformed into operational

systems.

The CIM layer is where vernacular specific to the

problem domain is defined, constraints are placed on the

solution, and specific requirements illumined. Artifacts in

the CIM layer focus largely on the system requirements

and their environment to provide appropriate vocabulary

and context (e.g., domain models, use case models, con-

ceptual classes). The CIM layer contains no process-

ing or implementation details. Instead, it conveys non-

functional requirements such as business constraints, de-

ployment constraints, and performance constraints as well

as functional constraints.

The PIM provides the architecture, the logical design

18

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

Figure 1. Conceptual Cougaar Model Framework

plan, but not the execution of the plan in a tangible form.

Beyond high-level services, the problem domain itself

must be modeled from a processing per-spective. The

PIM is where the logical components of the system, their

behaviors, and interactions are modeled. PIM artifacts

focus on modeling what the system should do from an

external or logical perspec-tive. Structural and semantic

information on the types of components and their interac-

tions (e.g., design classes, inter-action and state diagrams)

are rendered in UML, the defacto modeling language for

MDA.

Mapping from the PIM to the PSM, is a critical el-

ement of MDAs approach. Mappings from PIM repre-

sentations to those that implement the features or func-

tions directly in the platform specific technologies are the

delineation point where there is considerable leverage in

MDA. This mapping allows an orderly transition from

one platform to another. But the utility does not stop

there. Like the PIM, there are opportunities to have layers

within the PSM to produce intermediate transformations

on the way to the executable system. These models range

from detailed behavior models to source code used in con-

structing the system.

This research concentrates on understanding and ap-

plying the MDA approach in the Cougaar agent-based ar-

chitecture. We explore ways of using MDA to facilitate

the development of agent-based applications by domain

experts and software engineering staff, by abstracting and

programming at a higher level — the domain level. We

investigate how Cougaar components may be composed

into a General Cougaar Application Model (GCAM) and

used to develop a General Domain Application Model

(GDAM) for specifying and generating software applica-

tions. The model-based approach to producing software

suggests that software change will be addressed at the ap-

propriate abstraction level. That is, if a change is made

at the application domain level, it should be supported

through the transformation and mapping process. Hence,

we examine the elements necessary to make this possi-

ble. While we apply MDA to Cougaar specifically, we

believe that the principles are general enough to apply to

other agent-based architectures. The main contributions

of this paper are: (1) The CMDA metamodel with a novel

transformation strategy; (2) Demonstrated feasibility of

MDA on a sophisticated technology that must scale (such

as Collaborative Agent-Based Systems; and (3) Integrated

19

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

levels of modeling (we can skip levels).

The remainder of the paper is organized as follows.

Section 2 provides an overview of Cougaar and its ca-

pabilities. Section 3 describes the new Cougaar MDA

framework. Section 4 outlines some of the underlying

structures for the transformations. Section 5 provides a

brief case study to illustrate the approach. Section 6 pro-

vides a discussion of related work and Section 7 con-

cludes the paper.

2. COUGAAR MODEL-DRIVEN ARCHI-
TECTURE

Cougaar provides a platform for developing com-

plex agent-based applications that can be self-aware, self-

healing, self-preserving and fault-tolerant. Like many so-

phisticated software development technologies, the key

challenge is the efficient and timely development of these

large-scale applications.

Central to this research effort is an effective technol-

ogy for developing agent-based systems well-suited for

tasking and workflow common in today’s business en-

vironment. Cougaar is an open-source, Java-based dis-

tributed agent architecture for developing large-scale dis-

tributed agent-based applications characterized by hierar-

chical task decompositions [2, 3]. The Cougaar environ-

ment enables developers to construct collaborative, agent-

based applications that involve high-level tasking, deter-

mine suitable processes and activities, and allocate ap-

propriate resources to complete the tasking. From an in-

formation systems workflow perspective, Cougaar agents

collaboratively accomplish various tasks based on the

functional business processes with which they are con-

figured [8].

Cougaar has been used for rapid, large scale, dis-

tributed logistics planning and conclusive research has

been performed for fault tolerance, scalability, and secu-

rity for enhancing the survivability of distributed agent-

based systems operating in changing environments. A

Cougaar agent consists primarily of a blackboard and a

set of plugins. The blackboard is a container of objects

that follows publish/subscribe semantics. The agent is

characterized by one or more plugins that are referentially

uncoupled (i.e., they do not know about each other). Plu-

gins implement the core business logic associated with

the agent. They publish objects, remove objects, publish

changes to existing objects via the blackboard, or create

subscriptions to be notified when objects are added, re-

moved or changed in the blackboard.

While agents collaborate with other agents, they do

not send messages directly to each other. Instead, a con-

cept of task is used for this purpose. Each task creates an

“information channel” used within the society for passing

down requirements, and responses going back [2]. Then

the agent must be located to allocate the task by creating

a subscription that examines the roles or property groups

of organizations in the local blackboard. Once the proper

organization is found, the task containing the object to be

sent to the other agent is allocated to that organization by

creating an allocation and publishing it to the blackboard.

The Cougaar communication infrastructure then ensures

that the task is sent to the specified organization’s and the

specified agent’s blackboard. Details of this are presented

later in the illustrative case study.

2.1. CMDA FRAMEWORK
Cougaar provides a higher level of abstraction than

the underlying Java in which it is implemented. Con-

sequently, the conceptual distance between the design

abstractions and the source code is somewhat reduced.

However, the gap between a domain model (needs and

requirements) and a design model is still substantial and

the MDA approach is used to bridge that distance and fa-

cilitate automatic generation of executable applications.

We use a framework based on the Cougaar Model-

Driven Architecture (CMDA),to describe the automatic

application generation [14, 15]. CMDA prescribes the

kinds of models to be used, how those models may be

prepared, and relationships between the various kinds of

models. Building on Figure 1, Figure 2 illustrates the

CMDA framework and exposing its key elements more

concretely.

The Cougaar platform-specific architecture models

are expressed in the General Cougaar Application Model

(GCAM) [2]. The GCAM provides representation in its

model of the basic constructs of Cougaar [3]. The core

representation includes: Agents, Communities, Societies,

Plugins, Assets, Preferences, Knowledge Rules, Poli-

cies, Rules, Constraints, Events, Facts, Services, Service

Providers, Tasks, Nodes, Subscriptions, Predicate, Mes-

sages, Directives, Logic Providers, Hosts, Domains, and

Configuration. Beneath these are are the Java and lower-

level constructs relevant to the implementation platform.

The platform-independent General Domain Applica-

tion Model (GDAM) expresses the domain models and

vernacular, and builds upon the foundation of GCAM.

That is, the problem domain and models, the require-

ments and designs collectively define the contents of the

GDAM. There are two potentially conflicting implica-

tions of the GDAM functionality. First, domain knowl-

edge and application requirements should be captured in

a manner that is computationally independent. Second,

there should be a well-defined structure and relationships

among requirements to allow for an automatic transfor-

mation of the requirements/constraints into an internal

GDAM representation that can be later transformed into

a GCAM representation. To address this conflict, the fol-

20

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

Figure 2. Model Driven Architecture Framework

lowing decisions were made:

• Transformations between the CIM and PIM should

be lightweight. The platform independent trans-

formations should subsume the computationally-

independent ones thus requiring only a simple trans-

formation between the two.

• The business logic must be embedded within the

computationally-independent representation to en-

force constraints. The constraint language must be

simple and easily transformed into code that can be

integrated within the platform.

• The platform-specific elements of application con-

figuration and deployment are treated separately

from the application requirements.

• User interactions and the user interface represent

a separate and important challenge. Automatic or

semi-automatic user interface generation based on

the application requirements is not unique; i.e., there

can be many different user interface designs. Such

designs can be customized based on the domain pref-

erences. We chose to leave this area to our research

partners as part of their scope and it is not reported

in this research.

3. OVERALL APPROACH
In this section we outline the overall approach to

CMDA and detail some key elements that make it effec-

tive. At the core of the CMDA is the metamodel that de-

fines how components are defined and how they are al-

lowed to interconnect. The components are stored within

a database repository, which can be queried by a compiler

and an editor. Transforms and mappings are the glue in

MDA holding together what would otherwise be an soft-

ware artifact reuse approach. These connections offer a

key architecture element for the relating of models and

concepts.

3.1. TRANSFORMATION
For this research effort, capabilities of various formal

methods were evaluated by conducting an in-depth sur-

vey of some of the key formal methods used for speci-

fying agent-based systems. Formal methods were con-

sidered based on their Object-Oriented (OO) modeling

support, usability, tool support and concurrency support.

Support for representing objects was a key selection cri-

terion, as Cougaar is an object-oriented system and in-

cludes the ability to represent objects and their constraints

such as pre-conditions and post-conditions. Interoperable

tool support was another important criterion for selection

since CMDA was to be interfaced with the Eclipse plat-

form [13]. Tool support also includes GUI interfaces to

perform consistency checks, type checking and code gen-

eration.

The usability criterion gave an indication of the

amount of difficulty in learning and using the formal

method, with a good rate indicating that the method’s

syntax were similar to popular programming languages

and easy to learn. The scalability criterion are the fourth

key criterion that indicates whether the representation was

scalable enough to support complex Cougaar systems.

The formal basis criterion provided insights into the rich-

ness of the formal methods to describe the system com-

21

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

pletely and correctly.

The transformation challenges entail using multiple

representations to represent the CDMA system compo-

nents [8]. The CMDA project endeavors to build a de-

veloper environment that offer developers’ components

which can be aggregated to represent the system in the

workflow, GDAM and GCAM levels. Each of the com-

ponents, named as Workflow Beans, GDAM Beans and

Cougaar Beans, respectively, (similar to the Java beans

concept) contain sections of software artifacts and related

information pertaining to that bean. Some example sec-

tions of the software artifacts that beans contain include:

1. The model from which the transformer gleans the

partial set of requirements,

2. The model from which the system’s design model is

assembled by the transformer,

3. References to the lower-level beans, or links to Java

code which can implement the bean (these are tra-

versed by the transformer while assembling the sys-

tem’s components), and

4. Test case fragments that contain information on how

to assembly the unit test cases for the beans.

Further, the bean contains documentation information

such as a description of the bean, and constraints pertain-

ing to data, operation and connections with other beans.

Constraints may be divided into two groups:

1. Port constraints, detailing constraints on input ports

of the bean, and

2. Role constraints, detailing the restrictions the bean

has on the roles or services the bean provides or sup-

ports.

The contents and size of the sections and information

in a bean are influenced by the abstract layer to which the

bean belongs. The model sections of each bean are rep-

resented using the Unified Modeling Language (UML)

[21], while the VDM++ or the Object Constraint Lan-

guage (OCL) representations may be used to delineate

connector and other constraint information. The code sec-

tion contain links to Java code libraries at the GCAM level

and pointers to lower levels in the rest of the abstrac-

tion layers. The requirements might be a combination

of XPDL, text, and UML diagrams, while the constraints

also contain mapping (or connection) information that are

mostly rule-based with some formalizations applied.

The workflow of the CMDA system proceeds with

the developer assembling the system by picking the right

workflow bean components and connecting them to repre-

sent the workflow. Constraints pertaining to connections

are encoded in the beans. When developers attempt to

Figure 3. System overview

connect components illegitimately, they are shown a de-

tailed error message. Once the workflow of the system is

built, it can be verified for consistency. Figure 3 shows

the system overview with its respective major elements.

The developer is then shown a list of GDAM beans

that can be chosen to map a particular workflow bean.

The system will list only related GDAM beans based on

the constraints specified by the developer at the workflow

level. The rationale to allow developers to choose the

right component is to allow developers to make design

decisions with the system assisting them (by showing a

list of possible solutions and patterns).

Similarly, GDAM beans are mapped into Cougaar

beans. In all layers, as and when required, the developer

will input the necessary information to satisfy the com-

pleteness and correctness of the bean component. The

usability of the system can be improved by developing

wrappers that would mask the semantic complexities of

the representation language. Once the models are built,

the transformation engine will traverse through the beans

at each level and generate the software artifacts based on

predefined transformation rules.

Figure 4 shows the CMDA system representation. The

CMDA allows domain experts to specify the intended ap-

plication using a high-level descriptive language. The de-

scriptive language comprises of a combination of a cus-

tom UML profile, Object Constraint Language (OCL),

and templates for code (Java) and documentation. The

UML profile is used to delineate the domain and applica-

tion models of the intended system. The OCL is used to

describe the domain and application specific constraints

that the generated system must adhere to. The templates

for code and documentation are the base structure of the

generated artifacts. The templates are populated with pa-

rameters that the user inputs into the domain and applica-

tion models, and the required software artifacts are gen-

erated. While the elements of the CMDA system will be

22

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

Figure 4. CMDA System Representation

described in detail in the subsequent sections, a quick de-

scription is given below to provide an overview of the sys-

tem. The CMDA system is comprised of the following

key parts:

Graphical Editor: allows the creation and editing of the

system description. It allows a mouse-based graphi-

cal environment for system specification, tied to the

OCL sub-system for full specification and interactive

validation. The domain and application models of

the intended system are created using the editor. The

models are assembled from the components avail-

able in the component repository. The editor also fa-

cilitates users (Cougaar developers) to create a new

domain and new Cougaar components.

Component Repository: is comprised of a database that

is used to store components and their revisions. The

repository has support for version control in order to

facilitate smoother distributed collaborative develop-

ment and publishing of components. The repository

can be extended using policies and procedures to en-

force effective knowledge management.

Model Manager: provides a unified view of all the com-

ponents and their contents, either as a Java class vis-

ible to the Virtual Machine (VM) via reflection, to

the repository, or in the file being processed. The

intended system’s design documentation can be gen-

erated from the information provided by the model

manager.

OCL Interpreter: built on top of ANTLR [20]. The in-

terpreter provides validation of constraints that are

defined in the component definitions and supports

the evaluation of domain-level and application-level

constraints that are used to describe the behavior of

the intended system.

OCL Java Generator: used to generate Java source

code equivalent to the OCL constraints described by

the user.

A Compiler: is a translator that converts, with the help

of the mapping and OCL profiles, the input high-

level description of the intended system into it is

equivalent software artifacts such as Java source

code, test cases, and documentation (requirements

and design).

Mapping Profile: a translator that takes a configured

component description and produces an artifact,

such as Java source code or documentation.

OCL Profile: a translator taking a configured component

and producing OCL expressions to be used by the

OCL interpreter.

3.2. METAMODEL
The Cougaar development process was divided into

two modeling phases. The completion of these two phases

results in creating domain and application models of the

intended system.

GDAM can be conceptually thought of as being sim-

ilar to various programming language libraries such as

MFC or Swing. The libraries abstract and modularize

the commonly-used functions, thereby helping users to

focus on encoding business logic. The GDAM can also

be viewed as a layer that roughly corresponds to the Plat-

form Independent Model (PIM) in the MDA. The PIM

is used to represent the system’s business functionality

without including any technical aspects. The MDA ap-

proach advocates converting PIM models into Platform-

Specific Models (PSMs) through a series of transforma-

tions, where the PIM is iteratively made more platform

specific, ending in the PSM. Hence, GDAM allows do-

main experts to represent the specification of the sys-

tem in a platform-independent, domain-specific language

that can be transformed, without losing information, into

specifications of how applications will be implemented in

the Cougaar platform.

GCAM is an abstraction layer above the Cougaar code

that represents the application’s design. Therefore, the

GCAM hides the Cougaar code implementation while

providing a platform specific “environment.” GCAM

represents the PSMs of the MDA concept. The PSMs

are converted into software artifacts using transformation

23

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

Figure 5. Metamodel

based on templates. That allows a user-developed appli-

cation model to be converted into software artifacts based

on pre-defined templates.

The meta-model of the CMDA system supports the

definition of GDAM and GCAM. In order to have a

smooth translation between GDAM and GCAM, and to

facilitate multiple sub-layers within the two models, the

same meta-model was used to define both models. The

meta-model is recursive in nature and allows users to

specify the intended application as a hierarchy of com-

ponents as shown in Figure 5.

Each component contains instances of other compo-

nents, at same or lower layers, and the components at the

lowest level (called leaf components) should be specific

enough for generation of the artifacts. The leaf compo-

nents are attached to the templates that contain informa-

tion on how to process the parameters of the component

and generate the required artifacts (Figure 6).

The meta-model simultaneously specifies several

parts of the intended system. These include the follow-

ing.

File Formats: the meta-model provides an XML schema

for how input files are given to the system. The

schema is directly used for storing reusable compo-

nents, and is indirectly used as the format for anno-

tating XML Process Description Language (XPDL)

files to specify a deployment-ready generated sys-

tem.

Language: as there is a compiler that translates from the

input form to multiple artifacts, an input language

specification is needed. Whether from a complete

reusable component definition or XPDL, the funda-

mental structure and relationships of the components

stay the same, specified in the meta-model.

Parsing: the meta-model is automatically generated

from an XML schema into an EMF model. That

model is then used to automatically generate a set of

Java classes representing its entities. EMF provides

inbuilt mechanisms for serializing and de-serializing

this model to and from XML, as specified by the

original schema.

Structural Analysis: the generated de-serialization code

validates the XML against the input schema, thereby

some structural analysis and error checking is per-

formed automatically.

The meta-model continuously evolves as and when

functionalities are added to the CMDA system. At

present, the meta-model has at its core a small number

of entities (Figure 7):

Component: the root element in the hierarchy. It is

reusable and specifies the set of parameters that the

component takes in when configured as part of the

domain or application model. The leaf components

(lowest level component) names a Mapping Profile

that is used to generate artifacts based on the param-

eters specified in the leaf component during compi-

lation.

Instantiation: a reference or instance of a component

that combined with values for its parameters (Param-

eterInits) represents a part of the model. Instantia-

tions are contained within components themselves.

Parameter: a declaration of required input data that the

component expects from the user. It allows hierar-

chical or recursive specification and allows optional,

24

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

���������

	�
���

	�
��
	��������	��

	�
���

	�
��
	��������	��
�����	��

�����	��

�����	��

��	������	��

Figure 6. A Component

required, multiple, and singular values. Parameters

have constraints expressed over them, specified in

OCL, that validate values assigned to them.

Role: a type of parameter that specifies another instan-

tiation. It is used for representing the connections

between components.

Resource: a type of parameter that is used to specify

deployment-specific values.

ParameterInit: the value for a parameter. The value can

include subtypes of parameter, such as a role or re-

source. These are OCL expressions that result in a

relevant value. The results of these OCL expressions

are passed to the constraints of the original parame-

ter in order to validate it.

Property: is a named OCL expression indicating some

calculated value relevant to the component. This is

used for validation, and provides a level of encapsu-

lation around the mechanics of a component’s usage.

Components are allowed to have named parameters to

specify them. Unlike simple template parameters, the pa-

rameter definitions are defined like a very small subset

of an XML schema. Parameters do not define their own

tag names, but they do specify a name attribute, which

is matched when given a value. They are also allowed to

define a parent parameter, thus allowing sets of parame-

ters and a cardinality. Together these two allow variable

numbers of sets of parameters, giving a reasonable con-

figuration language for components.

Components can specify roles, named interconnec-

tions, with other components. These interconnections

specify data types sent and received over them. Roles

are considered special types of parameters which are care-

fully initialized only with references to other component

instances. They also cannot have inner roles, or any such

hierarchy, as normal parameters can.

Similar to roles, deployment data is considered a spe-

cial type of parameter that cannot be made hierarchical.

In addition, deployment data cannot be given a true fixed-

value in a component definition, only an expression us-

able for deriving the value when the system is deployed.

Components can specify inner member components

that define their inner structure. These member compo-

nents are initialized and connected together. Their param-

eters, connections, and deployment information are given

static values or Object Query Language [23] expressions

based on the component’s parameter data. This allows the

component to fix some parameters, while simply propa-

gating down values for others.

Component properties relevant to the user are exposed

through a set of properties, defined as name-value pairs.

Each value is expressed using OCL. They can be either

OCL constants or expressions that allow their derivation.

This allows the component to define its properties as the

values of properties in its member components, possibly

with some modification (such as unit conversion) and re-

naming (to make it domain–relevant).

Unlike parameters, properties don’t take values from

their container; instead, they derive values from their pa-

rameters, members, or explicit initialization.

While the definitions immediately provide useful de-

scriptions of the system, they do not directly provide Java

code, test cases, requirements documentation, or UML di-

agrams. That is the job of a compiler. The compiler, in

some cases, needs “help” from the component definitions.

Each component specifies the name of a Profile Map-
ping. This links the component to a set of definitions for

how the artifacts, Java code, documentation, requirements

data, and UML diagrams are generated. Each profile map-

ping can handle different categories of components, such

as Cougaar Plugins, Agents, or Societies.

25

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

Figure 7. Metamodel UML Diagram

3.3. COMPILER
The compiler simply acts as a driver for the mapping

and OCL profiles. Given a top-level component defini-

tion, it executes some of its own static validation checks,

followed by the component?s constraints, followed by the

execution of any mapping profiles. The component’s con-

straints may call OCL profiles as needed. Once the com-

piler finishes this process for the top-level component,

it proceeds through a depth-first traversal of the com-

ponent’s instantiations, repeating the process described

above. At the end, the components have all been validated

and have had artifacts generated from them. The compiler

is an Eclipse builder, watching for changes to files within

a project configured to use it. When a file with an ex-

tension of .Xcomp is modified, the compiler invokes a

full rebuild. Through interaction with the Implementa-

tion Repository, it minimizes work for instantiations that

haven’t changed.

Mapping profiles provide the mechanism for generat-

ing artifacts from an instantiation. They extend an Eclipse

extension point defined by the compiler, and implement a

specified interface that generates an artifact when given

an instantiation. An additional wrapper is provided that

allows Java Emitter Templates (JET) to be used, by ex-

tending a second extension point instead. The compiler

scans for and detects either type of extension, and maps

its fully-qualified id attribute as its name. When an instan-

tiation’s component lists this name, the mapping profile is

invoked to generate text for an artifact.

Similar to mapping profiles, OCL profiles provide an

extension mechanism to the compiler. Instead of gener-

ating artifacts, OCL profiles provide an extension mecha-

nism for the OCL interpreter. Components can then call

these extensions in their constraints, member initializa-

tions, or property values. For example, one such function

could analyze the parameters fed into a factory compo-

nent, and provide an in-OCL declaration of the objects

created, allowing other OCL expressions to match them.

26

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

As each instantiation can generate artifacts, those arti-

facts must be created and managed. By properly manag-

ing them, we can avoid wasteful regeneration of artifacts

on unchanged components. The instantiation repository

manages the contents of the dependent project. It creates

one directory underneath the project for each component,

named after it. Underneath that, it creates a numbered di-

rectory to contain each instantiation. The mappings of in-

stantiation parameters to these directory numbers is man-

aged via an XML file that stores the mappings as the in-

stantiations are generated. The dependent project has an

Eclipse nature that maps to a class that provides methods

for accessing and manipulating the instantiations avail-

able in the repository.

The model manager provides a unified name space

for the OCL interpreter, combining multiple sources

of potential data. The default sources are straight-

forward: the input file, allowing self-referencing;

Java reflection, allowing references to Java types like

java.lang.String and the component repository,

allowing references to components other than the one cur-

rently being defined. It should be noted that the details

of the model manager’s interfaces won’t be complete un-

til it is tested against the OCL interpreter and generator’s

needs. The input file’s component is simply wrapped to

an instance called self. That variable is required for ba-

sic operation. Using standard reflection mechanisms un-

der java.lang.reflect, a complete interface is pro-

vided to the entire Java type system and all types avail-

able to the plugin?s classpath, as determined by Eclipse’s

management facilities. The component repository offers

an interface to the model manager, to allow components

to refer to others.

3.4. JET TEMPLATE
The CMDA system works on two key sub-elements:

the meta-model and JET templates. The meta-model is

the base for building domain and application models that

are used to specify the input parameters of the intended

Cougaar application. The data captured in the models

(GDAM and GCAM) are serialized into an XML docu-

ment. The XML document referred to as .Xcomp file

shows the “design” of the intended system. .Xcomp files

are a serialized XML version of the EMF model used to

represent the CMDA model. They are used as the input to

the JET templates to produce the code. The deployment

parameters are separate issues and the .Xcomp file does

not contain any deployment parameters.

The structure of the models can be considered as a

typical tree or graph with nodes representing the com-

ponents, and the edges between nodes representing the

linkage between components. The linkage between the

components can be of two types: inter-layer and intra-

layer. The intra-layer linkage represents the connection

between two components residing in the same layer and

the inter-layer linkage represents the composed of rela-

tionship between a component and its lower-layer compo-

nents. The components in the upper layer have to be com-

posed of components residing in the lower layers. The

components in the lowest layer (leaf nodes) are attached

to JET templates through means of profile mapping. The

profile mapping specifies which JET template needs to be

used for converting the parameters into artifacts.

The JET template is the template file written with a

JSP-like syntax (actually a subset of the JSP syntax). It

can not only express the source code that needs to be gen-

erated, but also other software artifacts such as documen-

tation. Like the general JET template, the Cougaar JET

template mainly consists of two parts: the static part and

the dynamic part. In order to maintain the modularity and

reduce the file size of JET templates, the developer can

fragment the JET template into multiple files. The break-

ing of the JET templates will also help in reusing the tem-

plate fragments. The breaking process is achieved by cre-

ating a new JET template, creating an object of the tem-

plate, and invoking the generate method. The attributes

required by the template fragment are passed as param-

eters of the generate method. A number of ready-made

templates were created for the CMDA system.

3.5. COMPONENT DEVELOPMENT
The CMDA system requires a set of domain and ap-

plication components to build the model and to generate

software artifacts of the intended system. The compo-

nent development is an evolutionary process and any pre-

existing source code can be wrapped with the minimum

effort and used in the CMDA system. This is to ensure

that least amount of startup time is spend on using a pre-

existing code as a new component. While a new compo-

nent can be created easily from pre-existing source code,

the reusability of such component is very limited as these

components have very little or no parameters. As and

when the new component, created for a specific instance,

needs to be reused, the JET template for the component is

refactored and parameterized. After a series of such evo-

lutions, the JET template is highly parameterized and that

component becomes highly reusable.

The number and reusability of the components in-

crease along with the increase of usage of the CMDA sys-

tem. In order to start the evolution of the components, a

set of seed components was developed. The set of seed

components developed includes:

Expander: a highly parameterized component that will

generate ExpanderPlugin code.

Allocator: a moderately parameterized component that

will generate AllocatorPlugin code for most in-

27

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

stances where no new task is published by the plu-

gin.

AllocatorwithTaskPublish: a component with low pa-

rameterization that will generate AllocatorPlugin
code for some instances in which a new task is pub-

lished into the blackboard.

Assessor: a component with low parameterization that

will generate AssessorPlugin code for some specific

instances.

Completion: a highly parameterized component that

will generate code for a generic Plugin that sub-

scribes to a task and masks it as complete.

Execution: a highly parameterized component that will

generate code for the ExecutionPlugin.

Aggregator: a highly non-parameterized component that

will generate the code for AggregatorPlugin for very

specific instances.

3.6. DEVELOPMENT ENVIRONMENT
The Meta-Model is based on a few simple concepts:

• Collaboration Components are designed to work to-

gether to finish a task. They interconnect via con-

nection points called “Roles.”

• Decomposition Components can be defined in terms

of other components. Each use of another compo-

nent is called an “Instantiation.” The inner definition

itself can be a network of collaborating components.

This and the collaborative concept above make the

Meta-Model recursive (Figure 8).

• Reuse Components are designed to be used multi-

ple times. However, each time its used, a component

must take parameters that define its specific behav-

ior. An Instantiation of a component contains values

to fill those parameters, called “ParameterInits.”

• Generation The Component definitions by them-

selves aren’t the desired end-product. Instead, com-

ponents define (or reference) definitions of how ar-

tifacts source code, UML models, documentation,

deployment information, etc. are generated from a

component definition. These definitions are called

“Profile Mappings.” Profile Mappings interpret a

component instance’s parameter values to determine

how to generate the appropriate artifacts.

• Validation As the assemblies of models are expected

to be complex, some automatic ability to verify the

correctness of them is desirable.

CCollaboration omponents were designed to work to-

gether. The workflow as imported into the system is a

flowgraph representing the stages and decisions of the de-

sired application. At the top level, this represents com-

munities of Cougaar agents collaborating. Due to the re-

cursive nature of the Meta-Model (described below), in-

dividual agents or even individual plugins collaborations

can be described using the same mechanisms. Collabora-

tion between components is primary described using con-

nections between Roles. A Role is simply an endpoint

for a connection, declared and attached to a Component.

An Instance of the component is connected via its ports to

other instances, forming a graph.

CDecomposition omponents can be defined as its own

graph of other component instances . This allows the

CMDA system to use the same tools, Meta-Model, and

user interface for society, agent, and plugin-level descrip-

tions. Similarly, entire systems can be converted into

reusable components for larger systems later.

EParameterization ach component declares what kind

of parameters it needs in order validate and generate arti-

facts. The parameter system in CMDA is fairly complex,

so a slow, thorough approach will be taken in its descrip-

tion.

The “Parameter” is an abstract input to a component,

like a Java Interface or C++ abstract class. A component

actually takes in:

1. Roles Names of other component instances that the

generated instance will collaborate with.

2. JavaParameters A Java object value (as a string).

Described in detail below.

3. ResourceRequirements A parameter that is only

needed for deployment. These should be OCL ex-

pressions that are evaluated at deployment time to

determine their final values.

TValidation he system provides many avenues for

components to provide ways to validate their instances.

The system doesnt allow a component to generate arti-

facts until it has passed all validation steps. Primarily,

components specify their validation rules through con-

straints, top-level and in their parameters. Top level con-

straints are directly attached to the component, and are

validated against the entire set of parameter values. This

enables the verification of relationships between param-

eters (e.g. one parameter value must be twice the value

of another, etc.). Parameter-level constraints are validated

within their own scope only. They can still validate their

specific values as well as those of any subparameter val-

ues.

28

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

Figure 8. Component structure

OGeneration nce validated, a component instance is

passed to its profile mappings (PMs). Profile mappings

are compiler extensions that generate artifacts. A compo-

nent specifies which profile mappings apply to it. Each

PM generates output, possibly with its own internal val-

idation system, capable of declaring errors on the input

.xcomp file, viewable as normal compile errors. How-

ever, those validation failures are internal to the PM and

do not cause a full-level validation failure.

4. TRANSFORMATION RULES
Given the metamodel, we can now describe our trans-

formation approach in some more detail. Our transforma-

tions have three primary stages:

1. Tree Decomposition — The top–level model is

treated as a single component. The component

serves as the root of a component tree that contains

the entire system being generated. The tree structure

prevents cyclic dependencies, stratifies the compo-

nent graph into layers, and provides a deterministic

execution path for the generation of the system.

2. OCL Evaluation — Parameters to each component

are evaluated as OCL expressions before use (includ-

ing their connections to other components). OCL

supports the UML models, and serves as an expres-

sive means to transform semantics between layers of

the system.

3. Artifact Generation — When the final artifacts are

needed, an expressive Java–based runtime is fully

accessible to generators to create artifacts in any way

they deem necessary. The system invokes generators

with their parameters and provides them with full ac-

cess to the system being generated and the Cougaar

CMDA runtime.

4.1. TREE DECOMPOSITION
All models are structured as simple trees. Each

layer jump between platforms: the platform–independent

model, the platform–specific model, etc., reify as levels in

the tree’s hierarchy.

4.1.1. Component Layering: Transformations occur

at the boundaries of the CIM, PIM, and PSM. Even within

these layers, there are often many transformations. Trivial

transformations are handled in a single level, while non-

trivial transforms may take several levels to fully resolve.

Abstractly, platform dependent and independent can be

represented by two adjacent layers, but complex systems

and platforms usually require many layers of transforma-

tion before the full system can be specified. If the under-

lying platform is hierarchal, we can directly map compo-

nents to the underlying platform, leading to a straightfor-

ward transformation.

If the platform is distinctly different, we may define

a single child for a component, which converts semantics

between the platform independent and dependent layers.

After it has done its internal transformations, it can then

contain additional layers of children to continue the trans-

formation.

Even further, if this transformation procedure isn’t ap-

propriate for a particular part of the platform, the compo-

nent can define a mapping to do the rest of the work. The

mapping can then execute its own procedure for further

transformation and artifact generation.

The component developer may choose this route for a

few reasons:

1. Lateral Reuse — Instead of generating each com-

ponent, the component developer may want to in-

teract with an implementation repository for better

reuse. While our own component repository allows

the reuse of CMDA components, the generators may

have their own ways of reusing artifacts. Seeing one

29

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

artifact already generated anywhere else in the sys-

tem, they may choose to reuse it with differing in-

stantiation parameters.

2. Refactoring — Like traditional compilers, some lev-

els of automatic refactoring may be implemented.

Common subcomponents could be factored out and

reused in several places. In CMDA terms, utility plu-

gins could be dropped in for common combinations

of other plugins, resulting in much smaller and faster

object code.

3. Nonhierarchal Processing — Some platforms may

simply not be amenable to hierarchal decomposition.

Whatever methods are best for them can be placed

in, instead of attempting to coerce it back into a tree.

Even in this case, the complexity is hidden behind a

single component. It has its parameters to use as it needs,

and through their evaluation, access to the entire contain-

ing component’s definition — via the self.parent pa-

rameter provided by the system.

As such an escape from the hierarchal system is still

represented as a regular component (with a different map-

ping), it is compatible with the regular CMDA system

above and below it. Regular CMDA components can in-

clude it as needed, without any concern for its internal

structure. Similarly, this non-traditional component may

only choose to do part of its work nonhierarchially. It

can still include other CMDA components that do use the

regular execution and generation path.

4.1.2. Execution Path: The system’s generation path

executes in a top–down–top pattern. Top–down, the OCL

parameters and constraints are evaluated, and validators

run. With a valid system defined, and the parameters’

final values evaluated, we find ourselves at the leaves of

our system’s defining tree. There, we execute our artifact

generators for the leaves.

We continue bottom–up. With these leaf artifacts gen-

erated, we return an identifier for the artifact back to the

parent. The parent’s generator is run, with all its child

artifacts’ identifiers available. We proceed back up the

tree this way until we have the topmost artifact generated,

resulting in a complete system.

4.2. OCL EVALUATION
OCL makes for a very natural parametric language for

the CMDA system. First, it comes with UML. Second, it

provides a good expression language for describing pa-

rameters. Third, it is effectively for building quick valida-

tion passes through the declaration of simple constraints.

We use OCL heavily in the system. While we use

the tree–level decomposition to break down our layers be-

tween the PIM and PSM, OCL wires it all together. Par-

ents specify OCL expressions to configure their children.

Beyond normal numeric, string, and boolean expressions,

we can supply Sets, OrderedSets, Bags, and Sequences1.

When the CMDA system executes to generate arti-

facts, we run OCL expressions in three different parts of

the component:

1. Parameters — OCL expressions that evaluate to

scalar values, strings, and various collections.

2. Roles — References to siblings or parent–level enti-

ties in the platform. Roles connect components to-

gether.

3. Constraints — OCL predicates validating the result-

ing values of the parameters and roles.

Parameters can configure any aspect of a component.

Each parameter’s definition includes the method it’s in-

terpreted with. Some will be OCL expressions, some are

simple strings, and others are run–time OCL expressions.

In Cougaar, we can configure static attributes resulting

from expressions. We can also define OCL expressions

that pass on verbatim to generators, which set up the OCL

for execution at run time.

Siblings connect to each other through roles, which

specify collaborators through OCL expressions like

self.parent.other-sibling. In Cougaar, this

includes other agents in a society.

4.3. ARTIFACT GENERATION
Generators are keyed to different profiles, such as

source code, documentation, or formal models. Each gen-

erator connects to a component through a mapping, which

is invoked during the CMDA compiler’s execution. Gen-

erators have full access to the parameter values of the

component, and are allowed to generate a single top–level

artifact for that component. The nature of the hierarchy

for artifacts depends on the artifact generated (e.g. a Java

artifact generator may only return one class name to the

parent).

They may, however generate multiple inner artifacts.

For example, instead of a single Java class, an entire pack-

age may be generated, following a naming convention de-

fined by the coordination of generators between a parent

and child component.

In the next section, we discuss an abbreviated case

study that outline how the transformations are imple-

mented and used to generate Cougaar applications.

5. SUMMARY CASE STUDY
In order to get a more concrete sense of the CMDA

approach and the prototype environment that was devel-

1Bags and Sequences allow duplicates, and Sequences are ordered.

30

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

oped to explore key aspects of the approach, this section

provides an abbreviated case study. The feasibility of

the overall approach and representation mechanism was

evaluated by developing a workflow model for a sample

project, namely Books OnLine 2 [1], a complete exam-

ple of a Cougaar-centric application. BooksOnLine em-

ulates functionality of an online book store and incorpo-

rates many of the infrastructure features.

Figure 9 illustrates the basic elements of an online

book store where each circle is a cluster within a Cougaar

society of collaborating agents. Each of these organi-

zations will have several different subfunctions imple-

mented using Cougaar PlugIn components.

Figure 9. Books Online Example [1]

As an example, Figure 10 shows Payment cluster

that includes functionality that will be used by a company

outside of the corporate boundaries of BooksOnLine.

Figure 10. Payment cluster [1]

Figure 9 shows the overall structure of interaction be-

tween the agents. At the top level, the interaction is de-

fined through the roles each agent defines for collabora-

tors and the assignments of these roles. Looking at Fig-

ure 11, we see that we have a 3–level hierarchy of artifacts

to generate.

At each level of the hierarchy, a different set of gen-

erators are defined to analyze the model and generate rel-

evant artifacts. At the bottom–most layer we have our

Expander, Execution, Allocator, Aggregator, and Com-

pletion models. Generators at this level generate directly

executable code for the Cougaar API, and correspond 1-1

to each of these models. For example, we have an Ex-

panderGenerator that analyzes instances of Expander in

models and generates Java code that implements the Ex-

pander design pattern.

The models have parametric values which the genera-

tors read and use for code generation. In Figure 11, there

would be several different Java source files generated by

the Expander’s generator. The generated Java code is in

the form of Cougaar plugins, connecting directly into its

existing infrastructure as if it was hand–written. Each

Java class would be similar in structure to each other, but

would have specific differences that cause them to operate

in line with their parameters. These Cougaar-API level

PSM models are typically implemented using a fill–in–

the–blank JET template system, which work similarly to

the well–known JSP (Java Servlet Page) system. The ma-

jority of the generated code is written verbatim in the tem-

plate, with generation logic defined as Java code within a

block of escaped text.

Parameters transform through two paths. First, com-

ponents define expressions for their inner components,

based their own parameters. As these expressions are

OCL, they can be rather sophisticated. The dependency

graph for parameters is top–down. Each component de-

fines input parameters that it uses to determine the values

for parameters passed to its inner components. The gen-

eration process thusly goes top–down to evaluate all the

parameters. At the bottom–most level, the values of all

parameters have been fully evaluated, and artifacts can be

generated. The top–most component cannot define any

input parameters.

Second, the generators take the resulting parameters

and use them for their own artifact generation. The OCL

interpreter is available as a library both at generation time

and at runtime for the generated artifacts. In the lat-

ter case, the OCL is compiled at program initialization.

OCL–aware components have been written to simplify.

The loop below uses the numOfSubscriptions pa-

rameter as a count for a loop, generating several subscrip-

tions as needed.

At the next level up, the agents OrderManager, Ware-

house, PaymentManager, and Shipper generate agent.xml

31

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

files that instantiate the generated Java–based plugins.

The agent.xml files use the Cougaar infrastructure for

loading our generated Java code. The generator applied

to all four of these agents is the same, a JET template that

generates the agent.xml file.

Finally, a generator is run against the BOLSociety

model, which generates an agent.xml file. Similar to the

JET template for agent.xml, it simply generates a soci-

ety.xml file. Both of these files are defined by two differ-

ent schema in the Cougaar architecture.

As discussed earlier, the overall generation process

occurs top-down. When we run against the top model,

it invokes a build against all of its sub–models. The sub–

models do the same, recursively. At the bottom level, the

generators take their evaluated parameters and generate

Java code for the Cougaar plugins. The generators return

the name of their generated artifact up to their parent. The

parents then generate their artifacts and return the name of

their generated artifact up to their parent.

In the Books Online system, the BOLSociety’s build

will invoke a build of all the agents. Like all the

other agents, the Warehouse would invoke generators

for it’s contents —the Execution, Expander, and Alloca-

tor plugins. The plugins’ generators would return Java

class names to the Warehouse’s compiler. The class

names would then be used to generate the Warehouse’s

agent.xml. The Warehouse’s agent name would be re-

turned to BOLSociety’s build, which would then use it

in it’s society.xml

At each level, we use Cougaar’s standard methodol-

ogy for parameterization. At some levels, the child ends

up being responsible for generating its fully–configured

self. At others, the parent will instantiate and configure

the child at run–time. When a parent configures a child,

the parent stores the child’s parameters in it’s artifact.

When a component is responsible for it’s own parame-

ters, the generated artifact uses the parameters directly.

For example, some parameters to the Expander will result

in specific piece of code being generated. Other param-

eters will result in text being generated in the agent.xml,

which the Cougaar runtime will use to configure our Ex-

pander plugin at runtime.

As the generators defined at each level can be JET

templates (any eclipse plugin extending our APIs can be

generators), we can start each one from a hand–written

artifact. The original artifact is simply renamed to indi-

cate it’s now a template (.javajet), and the model will

specify it as a generator. The generator developer then

starts defining parameters and its accompanying genera-

tion logic to generalize the template.

At the top layer, we have a simple container model

that holds the components and wires them together:

<?xml version="1.0" encoding="ASCII"?>
<model:component xmlns:model="http://www.cougaar.org/xc/model"
doc="" level="0" name="BOLSociety">

<member name="TheWarehouse">
<type name="Warehouse"/>
<param name="bookSupplier" value="OrderManager"/>
<param name="superior" value="OrderManager"/>

</member>
<member name="TheOrderManager">
<type name="OrderManager"/>
...

<mapping name="Cougaar11" profile="gcam.jet.Society"/>
</model:component>

Using the mapping tag, we indicate which generator

will create an artifact for this model. Multiple generators

may be specified, creating mulitple models. We specify

an OrderManager for both the bookSupplier and

superior roles here. The Order Manager is instantiated

below that. While our simple example only requires one

of each, the same agent could have multiple instantiations,

with different parameters to specify each.

Below that, we have model definitions for every type

of object Here, the Warehouse would define itself as two

plugins within an agent.

<?xml version="1.0" encoding="ASCII"?>
<model:component xmlns:model="http://www.cougaar.org/xc/model"

name="Warehouse">
<member name="WarehouseExecution">

<type name="Execution" />
<param name="subscription" value="o.isKindOf(Task) &

& o.oclAsType(Task).getVerb()=’PACKER’">
<param name="variable" value="PerformJob_performJob">

<param name="contents"
value="new PerformJob(getBlackboardService(),

task, logging, getPlanningFactory())" />
</param>
<param name="CodeSnipet"

value="threadService.schedule(performJob, 1000);" />
</param>

</member>
<member name="WarehouseExpander">
<type name="Expander" />
<param name="subscription" value="o.isKindOf(Task) &

& o.oclAsType(Task).getVerb()=’BOOKSFROMWAREHOUSE’">
...

The Warehouse is made of two plugins within

the Cougaar agent: an ExecutionPlugin and an

ExpanderPlugin. The first is a simple plugin

that accepts Java code in some of its parameters.The

subscription parameter provides the plugin with an

OCL expression to look for on the Cougaar Blackboard.

Upon finding an object of this type, it declares a vari-

able performJob of type PerformJob2. The vari-

able is filled with a new PerformJob instance, initial-

ized to the current task. The current task is defined by the

ExecutionPlugin. Once filled, the variable is used in

a direct piece of java code fed in through CodeSnipet.

threadService is defined as a standard member vari-

able of the plugin.
ExecutionPlugin defines itself quite simply as an

XML schema:

2Direct Java code in the parameters are a “backdoor” to allow generator
implementors to get working quickly. It’s usually recommended that
Java code be avoided in parameters, and that the individual component
type be made more general or broken up into several components to
avoid this low–level programming. Here, the variable parameter has
a convention of using an underscore to separate the variable’s type and
name. Inner parameters could have done the same thing separately, but
this is more convenient for hand–written code that hopefully will get
removed as the components get more sophisticated.

32

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

<?xml version="1.0" encoding="ASCII"?>
<model:component xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:model="http://www.cougaar.org/xc/model" doc="" level="0"
name="Execution">
<param name="subscription">

<parameter xsi:type="model:javaParameter" name="variable">
<parameter xsi:type="model:javaParameter" name="contents"/>

</parameter>
<parameter xsi:type="model:javaParameter" name="CodeSnipet"/>

</param>
<mapping name="ObjectName"

profile="org.cougaar.xc.pm.demo.ExecutionPlugin"/>
</model:component>

A simple subscription containing variable
and CodeSnipets,

An abbreviated look at the template will be useful:

<%@ jet
class="ExecutionPlugin"
...
import java.util.*;

/**
* ExpanderPlugin with parameters <%= argblock.getInst().getParam() %>

*/

public class <%=className%> extends BOLComponentPlugin {
private static final String pluginName = "<%=className%>";
private ThreadService threadService = null;
// NAME = <%= Interpreter.eval (argblock.getInst(), "self.type.name")%>

<% ArrayList subs = argblock.paramsNamed ("subscription");
ArrayList names = new ArrayList (subs.size ());
ArrayList preds = new ArrayList (subs.size ());
ArrayList exprs = new ArrayList (subs.size ());
int i;
for (i=0; i<subs.size (); i++) {

String name = "subscriptionNr"+i;
String pred = "predicateNr"+i;
names.add(name);
preds.add(pred); %>

private IncrementalSubscription <%=name%>;
<% ParameterInit pi = (ParameterInit) subs.get (i);

exprs.add(pi.getValue ()); %>
private UnaryPredicate <%=pred%> = new

OCLPredicate ("<%= pi.getValue ()%>");
<% } %>

protected void setupSubscriptions() {
<% for (i=0; i<subs.size (); i++) { %>

<%=names.get(i)%> = (IncrementalSubscription)
getBlackboardService().subscribe(<%=preds.get(i)%>);

<% } %>
}

...
/**
* Expand as indicated.

*/
protected void execute() {

System.out.println ("Executing " + pluginName);
Enumeration e;

<% for (i=0; i<subs.size (); i++) { %>
/*
Check: <%=exprs.get(i)%>

*/
e = <%=names.get(i)%>.getAddedList ();

while (e.hasMoreElements()) {
try {

Task task = (Task) e.nextElement ();
<% ParameterInit sub = (ParameterInit) subs.get(i);
EList subE = sub.getParam();
Iterator subI = subE.iterator();
while(subI.hasNext()) {

ParameterInit var = (ParameterInit) subI.next();
if(var.getName().equals("variable")) {

StringTokenizer st = new StringTokenizer(var.getValue(),"_");
String varType = st.nextToken();
String varName = st.nextToken();

ParameterInit contents = DemoUtils.findChild(var,"contents");%>
<%=varType%> <%=varName%> = <%=contents.getValue()%>;
<% }else if(var.getName().equals("CodeSnipet")) {%>
<%=var.getValue()%>
<% }

}%>
} catch (Throwable t) {

System.out.println (pluginName+": failed on expansion of
\"<%=exprs.get(i)%>\"");

}
}
<% } %>

}
}

We demarcate elided parts with el-

lipses. In the class declaration, we define as

many IncrementalSubscriptions and

OCLPredicates as we have subscription
parameters. In setupSubscriptions, we initialize

the subscriptions with our predicates on the Blackboard.

Finally, in execute, we go through all of our parame-

ters given in each subscription, and do the variable

declarations and Java code declared in each.

The workflow model was transformed into PSM and

code fragments (code for Assets and Agents) were gener-

ated from the PSM. This demonstrated how components

are created, assembled (to create application and imple-

mentation models) and transformed into design, code and

documentation artifacts (Figure 11).

Early on in the effort, there was considerable skepti-

cism around the ability to actually generate Cougaar ap-

plications from high level specifications. To a large de-

gree, this has relaxed as we learned more about MDA

and about available tools to support the CMDA prototyp-

ing effort. While there is still a healthy respect for the

effort needed to generate all of the work products from

a Cougaar Application development effort, the gap has

closed considerably. We have now seen that for general

instances of workflow and agents, parameterized compo-

nent specification is a viable option with reasonably good

results. There are still instances where complete speci-

fication is difficult, requiring human-in-the-loop effort to

supply vital information, but they are not overwhelmingly

hard or the norm.

Generating source code from increasingly refined and

elaborated models was feasible and in most situations

doable. The CMDA Meta-Model based on the recursive

GDAM/GCAM structures appear to provide a reasonably

good framework from which to implement the MDA ap-

proach. While the prototype was not robust enough to

develop full Cougaar Applications in a development en-

vironment, it did develop them in an experimental envi-

ronment. We did not examine scale or special cases of

developing components; however, for the general cases

that we experimented with, there were some promising

results.

However, we found that roundtrip engineering re-

quires considerable information and closure on that in-

formation to be fully feasible. However, a looser interpre-

tation of roundtrip engineering based on mappings and

dependencies coupled with todays reverse engineering

tools provided significant leverage towards the objective.

Given our experience, we believe that as the CMDA com-

piler evolves, roundtrip engineering for the larger class

of components will be feasible. It will require account-

ing for component, connections/dependencies, and con-

figurations that are expressed in forms like the .Xcomp

file we currently employ. Further, there will need to be

a more elaborate artifact management approach to sup-

port roundtrip engineering in future implementations of

CMDA.

For the CMDA prototype, we took the tact of treat-

ing it like a traditional Integrated Development Environ-

33

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

Figure 11. Books Online artifacts

ment (IDE). As it turned out, this worked well for im-

plementation. The UML as a base language provided the

input while the Design-Generate-Test cycle fell naturally

with the bounds of the IDE. Using this approach, the typ-

ical compilation issues such as validation, error recovery,

name lookup, and the like, show up quickly.

However, it is important to note that unlike traditional

source code, different formats are relevant for different

levels of abstraction in CMDA. Different diagram formats

are relevant for component, agent, and society levels, such

as class, component, and package metaphors. Albeit, we

found in Java normal source code is perfectly fine at all

levels.

Like other MDA efforts, we found that artifact man-

agement quickly becomes complex with all the different

kinds of artifacts. Moreover, these artifacts were relevant

at different times, much more than any nontrivial system

can manage at a low level. We found that deciding which

artifacts to generate at any given time are best decided

through some delegation mechanism. This is the rea-

son for the tight integration between the compiler and the

component templates (the templates plug into the com-

piler and extend its interfaces) the dependencies could be

managed in an automated manner, relieving the developer

of the burden.

We found that most artifacts have their own deploy-

ment needs (i.e., relative and absolute path locations). For

example, java source has to be deployed to match the de-

clared package and class name. Naming the artifacts and

preventing conflicts in naming is a complex problem to do

well. To ensure uniqueness, while we could use an auto-

generator to generate new names from scratch (e.g., auto-

gener 1), we would sacrifice human comprehensibility of

the generated code (as well as the other model artifacts).

Some features of an IDE like Eclipse’s continuous re-

compilation model could easily lead to manycopies of

the artifacts if special care isn’t taken early. Therefore,

we designed our instantiation store which is structured

to make sure that we only ever generate a given instance

of a component once. Even this is not a perfect solution

as it does cause some problems when the templates have

changed: as the pre-existent instances are already there,

no implicit regeneration takes place this can be fixed with

a template version tag.

34

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

From a project management perspective, there were

some reasonable lessons learned as well. The design and

underlying architecture needs time and patience to evolve

in applied research projects like this one. We should not

hesitate to improve the design, even midway through the

project (provided the changes do not adversely affect the

project schedule). This avoids homeostasis of initial de-

sign and provides the necessary learning that is an impor-

tant part of this type of effort. The willingness to transi-

tion to a more aggressive infrastructure was a good move

as it resulted in a more flexible solution.

6. RELATED WORK
There have been a number of projects that have ad-

dressed multi-agent systems (MAS) and MDA before and

since our first research effort using this technology back

in 2003 [8]. As we investigated more and more de-

tailed issues, we found leverage using MDA principles

[9]. We targeted a model-based engineering approach

flexible enough for many model representations (ranging

from abstract requirements to concrete code) to be used.

While we engaged the MDA structure (i.e., CIM to PIM

to PSM) to separate key development and evolution con-

cerns, a distinguishing element of our approach is that

we have not stayed strictly with the OMG route of de-

riving artifacts mostly in UML. Rather, when UML was

the expedient route, it was used. Otherwise, we adopted

the notion that if we had a close rendering of the capa-

bilities needed in the lower levels and they could be ab-

stracted to the higher layer without creating an interoper-

ability dependency, then we would build the transforms

and mappings directly. For example, when we developed

the Expander for flexible tasking (described earlier), it

was more expedient to opportunistically map the notion

of task in the PIM to the agent tasking components in

Cougaar (without violating the PIM and PSM separation).

This allowed quick and verifiable transformation rules.

Some non-MDA-based MAS methodologies such as

Prometheus [19], Tropos [10] and MaSE [12] have pro-

posed the mapping of the design models into implemen-

tation code and have provided some tools for supporting

both the design and the implementation of MAS. How-

ever, it is possible to describe platform specific details

during the design of the application — violating the sep-

aration of concerns between PIM and PSM. The resulting

high-level design models can be platform dependent and,

consequently, are not easily portable to any other plat-

form.

As with many MDA-oriented MAS efforts, we chose

to use a combination XML and other representations

like OCL because they lend themselves to the support

of transforms and mappings. As described in [5], the

key to MDA lies in the modeling representations and the

transforms/mappings. XML lends support for major data

transformations while OCL provides the constraints nec-

essary to characterize mappings to relevant components

and parameters for configurations. CMDA follows a sim-

ilar form, but is less UML specific in its representations.

Where there exists a line from abstract models to con-

crete components (source code is a model), CMDA al-

lows the incorporation of the models and relevant trans-

forms/mappings.

Other research has used the MDA approach to de-

fine a MAS development process. [22] demonstrated the

use of MDA to derive MAS low-level models from MAS

high-level models. The authors propose to use the Tro-

pos methodology and the Malaca models in the MDA

approach. The high-level models created while using

the Tropos methodology are transformed into low-level

Malaca models. However, the transformation from the

Tropos models into Malaca models is not completely au-

tomated. Since human in the loop is not explicitly de-

signed into the approach, there are some discontinuities

in the flow when this occurs. Moreover, such an approach

does not deal with the transformation from Malaca mod-

els into code. In [16], the authors proposed a domain-

dependent methodology based on a model-driven ap-

proach for the development of distributed mobile agent

systems. They define a mobile agent conceptual model

for distributed environments and describe a set of com-

ponents, represented by a collection of intelligent mobile

agents.

Koehler et al. outline their transformation method that

implements model-driven transformations between PIM

business view elements and PSM architectural models

[18]. This approach, while more sophisticated for the

boundary between PIM and PSM, maps well onto the

CMDA approach. In CMDA, we attempted to stay as sim-

ple as possible, but complex enough to handle the com-

plex tasking that could arise with collaborative agents in

Cougaar. The CMDA metamodel was derived from our

experience and provided a reasonable structure for the rel-

evant transformations and mappings.

More recently, Demir compared the Software Factory

approach espoused by Microsoft with the Model-Driven

approach [11]. While the example with the online book-

store (standard example for MASs), lines up nicely with

CMDA, the paper is theoretical and is not supported by

an actual prototype or empirical results. CMDA does

provide a complete system that demonstrates what Demir

discusses in his paper with the exception of the compari-

son with software factories.

While all of these related works have significant con-

tributions, what distinguishes CMDA is its flexible meta-

model that allows for more than UML-based models in

a domain-independent manner. The architecture of the

35

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

CMDA prototype implementation provides for the nat-

ural progression from an unpopulated model repository

(with considerable human-in-the-loop) to automated gen-

eration of agent-based software. The demonstrated sup-

port for scale and sophistication on a couple of MAS stan-

dard examples (Books Online and Pizza Delivery work-

flow) indicates the robustness of CMDA and the trans-

form/assembly approach to generating the Cougaar-based

systems.

7. CONCLUSIONS
As software systems accommodate more sophisti-

cated tasking and increasingly adapt to an ever-changing

environment, agents are a likely choice to respond. While

agent systems support many aspects that today’s systems

demand, in cases where they have been employed, devel-

opment and evolution have been challenging. To address

the challenge, we investigated MDA as a model-based

means of moving the abstraction level up so that appli-

cation domain personnel could be increasingly incorpo-

rated into the development teams. This has been shown

in other development approaches to increase productivity

and decrease errors.

We designed the GDAM to support both computa-

tionally independent and platform independent models.

They represent the interaction points for the domain spe-

cialists with the software developer. We also developed

the GCAM to support the platform specific elements of

the development. The GDAM and GCAM perspectives

were tied together through the metamodel that enables

the transformations and mappings necessary to generate

the application. We endeavor to automatically generate

as much of the application as possible.

While early investigations fostered transitions using

UML for both analysis and design models, we found that

in many cases, the domain objects could be mapped to

Cougaar components, particularly where the abstract con-

cepts were already developed in the Cougaar architecture.

This was due to the fact that many Cougaar components

were already developed for workflow applications. This

was welcomed, since sometimes the full cycle represen-

tations in UML were laborious and potentially contrived

to accommodate the limitations of UML. In these cases,

we generated the UML from the component definitions to

support the need for documentation.

To engage the interdisciplinary team, we developed

a graphical editor that allows the domain experts and

the software developers to work together in producing

GDAM models. This enabled the subject matter experts

to be involved with the development; thus improving their

contributions and expediting what is often seen as a com-

munication bottleneck in the development process. The

coupling of the reuse from the MDA and the interdis-

ciplinary interaction are the primary improvements ob-

served in the initial phases of this research.

While the approach currently focuses on the Cougaar

architecture specifically, it can be applied readily to other

agent-based architectures. It will, with further research

and experimentation, form the basis of a methodology ap-

propriate for application to a wider range of agent archi-

tectures. The ongoing research is focusing on the evolu-

tionary component development. The current set of seed

components is being refined and new components are be-

ing developed.

Overall, the research demonstrated that the model-

based engineering approach is relevant to sophisticated

application development. While a pure MDA approach

would be feasible, the extra effort may rob some of the

benefits of the overall approach. Changing the system in

the MDA approach was effective when it could be made

at the most abstract level; however, when the change is

made to the code, the implementation was problematic as

the roundtrip engineering was a good ideal, but less feasi-

ble than expected.

Our CMDA approach exhibts desirable benefits in

terms of complexity, scale, and ease of application.

CMDA deals effectively with complex situations since it

is developed for supporting plugins (behaviors and tasks),

and the As to scale, Cougaar itself handles large systems,

but CMDA does not inhibit this. With the use of abstrac-

tions both in Cougaar and UML models, this is readily

handled. Finally, the interface for the user in our system

is relatively easy with the Eclipse IDE coupled with the

GCME modeling environment for the subject matter ex-

perts. To further gain experience with CMDA, we would

like to apply it to production systems and observe how the

development teams perform. The agent-based system is a

good example that can be compared with web services

and with service oriented architectures. Future research

will examine how model-based approaches could address

these situations.

ACKNOWLEDGMENTS
This work has been supported, in part, by the DARPA

STTR grant “AMIIE Phase II — Cougaar Model Driven

Architecture Project,” (Cougaar Software, Inc.) subcon-

tract number CSI-2003-01. We would like to acknowl-

edge the efforts, ideas, and support that we received from

our research team including Todd Carrico, Tim Tscham-

pel, H. Lally Singh, and Boby George.

REFERENCES
[1] —. Book-On-Line: An Advanced Cougaar Tutorial

Version 2.0. Cougaar Software, Inc., July 2003.

36

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

[2] —. Cougaar Architecture Document: Version for
Cougaar 11.4. BBN Technologies, 23 Dec. 2004.

[3] —. Cougaar Developers’ Guide: Version for
Cougaar 11.4. BBN Technologies, 23 Dec. 2004.

[4] —. Workflow Management Coalition workflow

standard: Process definition interface — XML pro-

cess definition language (version 2.00). Technical

Report WFMC-TC-1025, Workflow Management

Coalition, Lighthouse Point, FL 33064, Oct. 3 2005.

[5] J. Alvez de Maria, V. Torres da Silva, and

C. J. Pereira de Lucena. An MDA-Based Approach
for Developing Multi-Agent Systems. Monografias
em Cincia da Computao, No. 31/05, Editor: Prof.
Carlos Jos Pereira de Lucena, Sept. 2005.

[6] J. Arlow and I. Neustadt. Enterprise Patterns and
MDA: Building Better Software with Archetype Pat-
terns and UML. Addison-Wesley, Boston, 2004.

[7] C. Atkinson and T. Kühne. Model-driven develop-

ment: a metamodeling foundation. IEEE Software,

20(5):36–41, Sept.-Oct. 2003.

[8] S. Bohner, B. George, D. Gračanin, and

M. G. Hinchey. Formalism challenges of the

Cougaar MDA. In M. G. Hinchey, J. Rash,

W. Truszkowski, and C. Rouff, editors, Proceedings
of the Third NASA/IEEE Workshop on Formal
Approaches to Agent-Based Systems (FAABS III),
volume 3228 of Lecture Notes in Computer Science,

pages 57–71. Springer Verlag, 26–28 Apr. 2004.

[9] S. Bohner, R. Ravichandar, and J. D. Arthur. Model-

Based Engineering for Change Tolerant Systems.

Journal on Innovations in Systems and Software En-
gineering, 3(4), December 2007.

[10] P. Bresciani. Tropos: An Agent-Oriented Soft-

ware Development Methodology. Int. Journal
of Autonomous Agents and Multi-Agents Systems,

8(3):203–236, 2004.

[11] A. Demir. Comparison of Model-Driven Ar-

chitecture and Software Factories in the Context

of Model-Driven Development. Proceedings of
the Fourth Workshop on Model-Based Develop-
ment of Computer-Based Systems and Third In-
ternational Workshop on Model-Based Method-
ologies for Pervasive and Embedded Software
(MBD/MOMPES06), 2006.

[12] S. DeLoach. Multiagent Systems Engineering: a

Methodology and Language for Designing Agent

Systems. Proceedings of Agent Oriented Informa-
tion Systems, Washington, 1999.

[13] E. Gamma and K. Beck. Contributing to Eclipse:
Principles, Patterns, and Plug-Ins. The Eclipse Se-

ries. Addison-Wesley, Boston, 2004.

[14] D. Gračanin, S. A. Bohner, and M. Hinchey. To-

wards a model-driven architecture for autonomic

systems. In Proceedings of the 11th Annual IEEE
International Conference and Workshop on the En-
gineering of Computer Based Systems (ECBS 2004),
Brno, Czech Republic, May 24–27 2004.

[15] D. Gračanin, L. H. Singh, S. A. Bohner, and

M. G. Hinchey. Model-driven architecture for

agent based systems. In M. G. Hinchey, J. Rash,

W. Truszkowski, and C. Rouff, editors, Proceedings
of the Third NASA Workshop on Formal Approaches
to Agent-Based Systems (FAABS III), volume 3228

of Lecture Notes in Computer Science, Greenbelt,

Maryland, 26–28 Apr. 2004. Springer Verlag.

[16] M. Kazakov, H. Abdulrab, and G. Debarbouille.

A Model Driven Approach for Design of Mo-

bile Agent Systems for Concurrent Engineering.

MAD4CE Project Technical Report 01-002, Univer-

sité et INSA de Rouen, 2002.

[17] A. Kleppe, J. Warmer, and W. Bast. MDA Ex-
plained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley, Boston, 2003.

[18] J. Koehler, S. Kapoor, F. Wu, and S. Kumaran. A

Model Driven Transformation Method. Proceedings
of the Seventh IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC03),
2003.

[19] L. Padgham and M. Winikoff. Prometheus: A

Methodology for Developing Intelligent Agents.

Proceedings of the First International Joint Confer-
ence on Autonomous Agents and Multi-Agent Sys-
tems, Italy, 2002.

[20] T. Parr. The Definitive ANTLR Reference: Building
Domain-Specific Languages. The Pragmatic Pro-

grammers, Raleigh, North Carolina, 2007.

[21] J. Rumbaugh, I. Jacobson, and G. Booch. The
Unified Modeling Language Reference Manual.
The Addison-Wesley Object Technology Series.

Addison-Wesley, Boston, second edition, 2005.

[22] A. Vallecillo, M. Amor, and L. Fuentes. Bridg-

ing the Gap Between Agent-Oriented Design and

Implementation Using MDA. Proceedings of the
Autonomous Agents and Multi-Agent Systems Work-
shop, 93–108, 2004.

37

Shawn A. Bohner, Denis Gračanin, Michael G.
Hinchey and Mohamed Eltoweissy

Model-Based Evolution of Collaborative
Agent-Based Systems

[23] J. Warmer and A. Kleppe. Object Constraint
Language, The: Getting Your Models Ready for
MDA. The Addison-Wesley Object Technology Se-

ries. Addison Wesley Professional, second edition,

2004.

[24] T. Weis, A. Ulbrich, and K. Geihs. Model meta-

morphosis. IEEE Software, 20(5):46–51, Sept./Dec.

2003.

38

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

