
Journal of the
Brazilian Computer Society

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14
https://doi.org/10.1186/s13173-021-00119-5

RESEARCH Open Access

A study on machine learning techniques
for the schema matching network problem
Diego Rodrigues and Altigran da Silva*

*Correspondence:
alti@icomp.ufam.edu.br
Instituto de Computação,
Universidade Federal do Amazonas,
Manaus, Brazil

Abstract

Schema matching is the problem of finding semantic correspondences between
elements from different schemas. This is a challenging problem since disparate
elements in the schemas often represent the same concept. Traditional instances of
this problem involved a pair of schemas. However, recently, there has been an
increasing interest in matching several related schemas at once, a problem known as
schemamatching networks. The goal is to identify elements from several schemas that
correspond to a single concept. We propose a family of methods for schema matching
networks based on machine learning, which proved to be a competitive alternative for
the traditional matching problem in several domains. To overcome the issue of
requiring a large amount of training data, we also propose a bootstrapping procedure
to generate training data automatically. In addition, we leverage constraints that arise
in network scenarios to improve the quality of this data. We also study a strategy for
receiving user feedback to assert some of the matchings generated and, relying on this
feedback, improve the final result’s quality. Our experiments show that our methods
can outperform baselines, reaching F1-score up to 0.83.

Introduction
Schema matching is the task of finding semantic correspondences between elements (or
attributes) of two given database schemas [1–5]. Such a task is essential for enabling
data integration and systems interoperability in domains such as e-commerce, geospace,
biology, health, etc.
The schemamatching task is challenging for many reasons. First, schema elements, e.g.,

attributes representing the same concept, may have different names in different schemas.
On the other hand, elements with similar names may refer to distinct concepts. Also,
equivalent elements in two schemas may have a different structure. Finally, there may be
the case in which many elements from one schema represent a concept represented by a
single element in the other schema.
Consider the (simplified) schemas of databases on academic information from uni-

versities illustrated in Fig. 1. The schema matching task is to identify the matchings
(depicted as dotted lines) between elements from those schemas. In this example, the

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-021-00119-5&domain=pdf
http://orcid.org/0000-0002-8992-495X
mailto: alti@icomp.ufam.edu.br
http://creativecommons.org/licenses/by/4.0/

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 2 of 29

diagram on the left illustrates how the database schema from University A (UNIA) mod-
els data about students. The diagram on the right illustrates how the database schema
from University B (UNIB) models the same data. Notice that the same data is represented
differently, even using particular representations of hierarchy and attribute names. For
instance, UNIA.PERSONALDATA.NAME.Firstname and UNIB.Biography.fname

represent the student’s first name. Also, there might be more challenging match-
ings to be discovered, e.g., UNIA.BIRTHINFORMATION.Dateofbirth and
UNIB.Biography.dob, both are representing the student’s date of birth, which
may be validated only by a domain specialist or the schema owners. Finally,
some elements might not have any correspondences on the other schema, e.g.,
UNIB.Biography.citizenship.
Traditionally, the schema matching task is performed manually by specialists with

extensive knowledge about the schemas and their domain. However, even for a specialist,
this taskmay be time-consuming, costly, and error-prone. Over the years, several research
initiatives have been carried out to deal with schemamatching, resulting in several papers
published [2, 3, 6–9] and several prototypes and commercial systems made available
[10–12]. Many of these methods rely on a set of predefined steps and parameters
[2, 11, 13]. Others rely on machine learning to create specific models for every match-
ing task [4, 14, 15]. Heuristics can perform well in certain domains; however, they often
need tuning for achieving good results. On the other hand, machine learningmethods can
adapt to different matching tasks once a substantial amount of training data is available,
which may be hard to obtain.
As the problem evolved, schema matching tasks have appeared in settings where more

than two data sources (e.g., database, query forms) need to be matched [9, 16–20], as if
they compose a network of schemas. The task that involves more than two schemas is
known as the schema matching network task. Figure 2 shows an example of a schema
matching network. As in Fig. 1, we have (simplified) schemas of databases on academic
information from universities, where schema elements representing the same concept are
linked with dotted arrows. However, we now have a schema matching network with four
schemas, in which elements might have correspondences in one or more schemas.
The schema matching network task essentially shares the same characteristics of the

traditional pairwise setting. However, there are some new challenges, as well as oppor-
tunities. The more obvious challenge is the scale. As more schemas are involved, more
schema elements will be matched, and the number of possible matching combinations to

Fig. 1 Matching elements from two simplified databases schemas

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 3 of 29

Fig. 2 A schema matching network: four schemas on the universities domain

evaluate may grow exponentially. In addition, there is also the challenge of guaranteeing
the consistency of the matches across the whole network; that is, if some element e0 from
a schema S0 matches elements e1, . . . , en from schemas S1, . . . , Sn, respectively, for a mat-
ter of consistency, it is reasonable to expect that e1, . . . , en may match consistently among
themselves. On the other hand, and despite these challenges, there are also opportunities.
Based on the consistency requirements, one can define network-level integrity constraints
(e.g., [17–19]) and rely on them to verify the correctness of the matching process. Also,
any knowledge discovered during the matching process can be shared instantaneously
across the whole network as proposed by Madhavan et al. [17].
Since machine learning methods have been applied to the pairwise scenario with good

results, in our work, we experiment with these methods for schema matching networks.
This brings, however, additional challenges, notably the necessity of a larger volume of
labeled data and dealing with unbalanced datasets, in which the number of non-matching
of pairs is much higher than the number of matching pairs. To address these issues, we
study several techniques: using black-box schema matching systems to generate training
examples, relying on network constraints to build good and informative training sets, and
leveraging evaluations from users to help to improve the final matching quality, avoiding
making it a laborious task.
In a nutshell, our contributions are as follows. First, we evaluate some popular machine

learning methods previously used for the schema matching problem. Our study aims to
verify if machine learning approaches are suitable to the schema matching network prob-
lem treated as a classification problem. It enables us to choose one machine learning
method to act as a base learner. Next, we study if network constraints can help improve
the training phase and, consequently, matching results. Finally, we study the reconcilia-
tion task, where users may review, validate, correct the results, and show that user input

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 4 of 29

can help improve even more the matching results of a method. We also reflect on the dif-
ferent ways and stages to request the user input and howmuch this can change the quality
of matching results.
The remainder of this paper is organized as follows: In the “Background and related

work” section, we present an overview of the schema matching problem and how meth-
ods in the literature have tackled this problem. In the “Using machine learning in schema
matching networks” section, we discuss how to train classifiers to perform the schema
matching network task. Then, we present a method to leverage using heuristic meth-
ods and integrity constraints to obtain automatically labeled training examples. Finally,
we present a follow-up method to perform the reconciliation task, in which the method
uses network constraints and user inputs to improve the matching network quality. In
the “Experimental evaluation” section, we present experiments performed to evaluate our
methods. We show that our method can train a classifier to achieve up to 0.89 in terms
of precision. Next, we show that our automatically trained method reaches, on average,
an F1-score of 0.74, topping representative baselines. Finally, we show that the matching
quality can be improved, on average, 13% and using at least 4 times less user input than
other methods. In the “Conclusions and future work” section, we provide some remarks
and conclusions on our work.

Background and related work
The schema matching problem has been studied for a long time in the literature, with
several surveys and books covering this topic deeply and widely [5, 6, 21, 22]. In this
section, we only highlight work close to our study.

Classic schemamatching

Schema matching is the task of finding semantic correspondences between elements of
two schemas [2]. The schemas can be from any distinct heterogeneous data sources (e.g.,
database schemas, XML DTDs, HTML form tags, etc.) known to be in the same domain
[23]. This task is one of the first steps in any data integration process, as it results in
connecting two different data sources [6].
Despite several prototypes and methods being presented over the years addressing this

task, no current method is considered as having completely solved the problem. Also, to
guarantee the quality of matching results, a specialist user is often required to review the
answers after executing a method.
Usually, schema matching methods apply one or more functions to establish a simi-

larity value between pairs of elements from the schemas. Each pair is called a matching
candidate. These functions, calledmatchers, receive two elements as input and estimate a
similarity value between 0 and 1. The higher the value, the more similar the elements are.
Matchers can use several different strategies to estimate similarities, for instance, compar-
ing schema element names, their semantic similarity using a thesaurus, their data types,
cardinality, or even data values if available.
Table 1 shows an example of similarity values generated by the well-known Leven-

shtein distance function [24, 25]1 calculated for some elements from two datasets in

1The Levenshtein distance is a lexic similarity between two strings. Given two strings s and t, their similarity is the ratio
of their edit distance by the size of the bigger string, similarity(s, t) = edit_distance(s,t)

max(len(s),len(t))

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 5 of 29

Table 1 Similarity values based on the Levenshtein distance

Levenshtein matcher Schema B

searchForm
.search

searchForm
.searchType

searchForm
.keyword

searchForm
.shortTitle

searchForm
.shortAuthor

Schema A search 1.0000 0.6000 0.1429 0.2000 0.2727

search.field-title 0.0909 0.1818 0.0909 0.3636 0.0000

search.field-subject 0.1538 0.1538 0.0769 0.0769 0.0769

search.field-asin 0.2000 0.0000 0.1000 0.0000 0.0000

search.field-publisher 0.1333 0.1333 0.0667 0.1333 0.2000

search.field-dateyear 0.1429 0.1429 0.1429 0.1419 0.1429

search.field-keywords 0.1429 0.1429 0.5000 0.0000 0.1429

the Books domain. In this example, if a method chooses to apply a threshold value
of 0.7 in that similarity matrix, the only matching candidate that would be selected
is 〈search,searchForm.search〉. As another example, a method could rank all
similarities and select the top-k values from the matrix. For k=2, this strategy would
allow selectingmatchings 〈search.field-keywords,searchForm.keyword〉 and
〈search.field-title,searchForm.shortTitle〉.
Methods can choose to apply heuristics to combine matchers and select matching can-

didates. Other methods rely on machine learning techniques to create models to predict
if a matching candidate is a true matching or not. Alternatively, methods can query a
specialist to obtain correct matchings.

Heuristic methods

Systems such as COMA [2], Similarity Flooding [7], CUPID [3], and Agreement Maker
[13] are representative systems that use heuristics for combining matchers.
COMA/COMA++ [2, 11], whose name is an acronym for “COmbining Matching

Algorithms,” is a method that uses several distinct algorithms that implement similar-
ity functions and combines them to generate matchings between two given schemas. Its
execution is a good example of how heuristic methods work. Its flow of execution is as
follows: (a) it starts by receiving two input schemas from the same domain; (b) all pairs
of elements from the schemas are submitted to pairwise functions called matchers (such
as the Levenshtein distance). Each function calculates a similarity value ranging between
[0, 1], being 1 the similarity score that indicates a high similarity. Each matcher gen-
erates a similarity matrix, such as the one shown in Table 1. As a result, every pair of
elements has a similarity value assigned by each matcher. After calculating the similari-
ties, an aggregator function (such as the Average) is used to summarize all the similarities
calculated by the matchers into a single similarity matrix; (c) finally, the system applies a
selection method, such as using thresholds or selecting the top-k matches, to generate the
method’s matching answers and (d) presents them to the user.
The authors report that the best combinations of strategies are mainly lexical functions.

In fact, they indicate that a subset of the matchers proposed leads to the best combina-
tion of matchers. They also tested different combinations of aggregation and selection
functions. The experiments were performed on ten pairwisematching tasks from the Pur-
chase Order domain. The authors report the results for different configurations of COMA
and argue that each different configuration can be used in different scenarios. When its

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 6 of 29

best configuration (also referred to as the default configuration) is used, COMA achieved
Overall2 (a combination of precision and recall) values ranging from 0.6 to 0.7.
Although COMA has matchers that consider the structural hierarchy of elements, their

similarities are diluted by the aggregation function, losing this important aspect when
addressing the schema matching problem. Similarity Flooding [7] appears as an alterna-
tive that strongly considers the structural aspect of the schemas, as its algorithm is based
on graph analysis.
The Similarity Flooding algorithm starts by transforming the two input schemas into

graphs. Then, it applies a string matcher to estimate initial similarities between pairs of
elements from the schemas. Next, the flooding algorithm propagates similarities through
graph nodes from top to bottom. Similarities between elements in the same branches
receive partial scores from ancestor elements. Finally, the algorithm applies a threshold to
prune the less plausible matchings, and the highest similarities are given as the method’s
matching answers. The authors report experiments using nine pairwise matching tasks
whose ground truth was provided by volunteers. On average, the method reached an
accuracy value of around 0.55. The authors note that the algorithm could perform better
in some of the tasks, as the schemas had a higher amount of structural information.
Among other relevant heuristic methods for schema matching, we may cite CUPID [3],

Agreement Maker [13], and the work by Shiang et al. [26].
The heuristic methods are largely used as they are simple to implement and execute.

They often run fast and generate a large number of correctmatches. However, they are not
always consistent when running in different datasets. Previous studies [5, 21] observed
that these methods can perform better depending on the dataset and the chosen param-
eters. Some systems such as eTuner [27] and SMB [28] were devoted to determining how
tuning parameters can improve the matching.

Machine learningmethods

Some methods in the literature approach the matching problem as a classification prob-
lem, where a machine learning model has to decide if a matching candidate is a TRUE or
FALSEmatching, depending on whether or not they represent the same concept. Accord-
ing to such an approach, a schema matching task consists of two schemas S0 and S1 that
should be matched together. Then, there is a set C = {c1, c2, ..., cj} of matching candidates,
where each candidate c ∈ C consists of two schema elements s and t, each from a different
schema, a vector v of similarity values between them, given by several matchers, which
can be viewed as features of the matching candidate, and a label l, which should have the
value TRUE if s and t form a true pair of corresponding elements, or FALSE otherwise.
The ultimate goal is to find all the matching candidates in C that have the label l = TRUE.
Recalling the example from Table 1, we can build a set of candidate matches

by taking all possible combinations of elements in Schema A and Schema B, such
as 〈search, searchForm.search〉, then 〈search, searchForm.searchType〉
and so on. We see in the example that the Levenshtein similarity for the pair
〈search,searchForm.search〉 is 1.00. Other matchers can also be used. Consider
that a data type matcher has also evaluated the pair with value 1.00 as both elements take
string values. Hence, the similarity vector of the candidate would be v =[1.00, 1.00].

2Overall is defined by the authors as recall ∗ (2 − 1
precision).

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 7 of 29

Finally, if this candidate is considered a true pair of corresponding elements, its label value
is l = TRUE.
State-of-the-art methods use several learning strategies, such as combining several

decision trees to building a meta-model [14, 29], combining different learning algorithms
to create more complex models [28, 30], and using specialists inputs to help to learn
models to weigh strategies better and to tune learning parameters [8].
A few methods in the literature have applied machine learning techniques to the prob-

lem of combining matchers. Among the most representative methods in this category, we
cite LSD [30], SMDD [8], YAM [14], and SMB [28].
LSD [30] evaluates element-level matchers using previously obtained training data.

Then, a meta-learner selects and weighs matchers that classify matching candidates
in new matching tasks. YAM/YAM++ (Yet Another Matcher) [14, 31] uses a similar
approach: it trains several learning methods using training data. The models are evalu-
ated by using previously labeled examples. The best model generated is used to generate
correspondences to new matching tasks. ALMa (Active LearningMatching) [29] uses an
ensemble of decision trees to decide matchings. When trees cannot generate a decision,
it queries the user for clarification. The method takes the user answers to re-train models
and re-do the process.
Other methods we notice are SMDD—Schema Matching based on Data Distribution

[8], which uses neural networks; SMB [28], which uses the AdaBoost method; and the
work by Carvalho et al. [15], which proposes a genetic programming approach to find
complex matches.
Since learning classifiers require a training set, the user must often classify a large num-

ber of instances, which may be hard to carry out. This requirement is a disadvantage
in comparison to the previously described heuristic methods, which are unsupervised.
On the other hand, machine learning-based methods can generate different models for
different matching tasks, leading to potentially better results.

Schemamatching networks

With the number of sources getting higher and the growing necessity of making systems
interoperate, creating global schemas to represent many different sources in an integra-
tion process has been a necessity. However, when adding new sources to the process, the
global schema created often needs to be rebuilt, which is hardly a practical solution [32].
Moreover, applications are getting more and more complex and require more than two
schemas, unlike the classic schema matching problem. Schema matching network takes
as input a (potentially large) set of schemas in the same domain and outputs matches of
elements of the schemas altogether [33].
We illustrated in Fig. 2 an example of a schema matching network involving four

schemas on the universities application domain.
A schema matching network task is a tuple N = 〈S ,C,�〉, where S = {S1, S2, ..., Sn}

is a collection of schemas that should be matched together, C = {c1, c2, ..., cj} is a set of
matching candidates, and � = {ω1,ω2, ...} is a set of network constraints. For each pair
of elements 〈s, t〉 ∈ Si × Sj,∀Si, Sj ∈ S , i �=j, there is a candidate match c ∈ C of the form
c = 〈s, t, l, v〉. As in the classic schema matching setting, v is a vector of similarity values
and l is a label whose value is TRUE if s and t form a true pair of corresponding schema
elements or FALSE otherwise. In a typical schema matching network task N , the goal is

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 8 of 29

Fig. 3 One-to-one constraint violation

to find all matching candidates c which the label value l is TRUE. The correspondences in
the matching network should comply with the set of network constraints �. In this work,
we consider two network constraints:
One-to-one constraint. Any attribute of a schema has at most one matching attribute in

another schema. In Fig. 3, a, b, and c are uncertainmatchings as the attribute Firstname
from UNIA has three correspondences in the schema from UNIB. Formally, ω1 (one-to-
one constraint) is defined as follows: Consider elements a ∈ S1 and b ∈ S2. If a matching
c = 〈a, b〉 has label l = TRUE, no other candidate cx = 〈a, x〉(x ∈ S2 ∧ x �= b) can have
lx = TRUE and no other candidate cy = 〈y, b〉(y ∈ S1 ∧ y �= a) can have ly = TRUE.
Cycle constraint: Attributes matched together in different schemasmust form a cycle. In

Fig. 4, thematchings 〈k, l,m〉 violate the cycle constraint as they do not close a cycle. To fix
this inconsistency, either matching k should be changed to connect Middlename(UNIA)
and mname(UNIB) or matching m should be changed to connect fname(UNIA) and
NAME_MIDDLE(UNIC). Formally,ω2 (cycle constraint) is defined as follows: Consider ele-
ments a ∈ S1, b ∈ S2 and c ∈ S3. If the matching candidates cx = 〈a, b〉 and cy = 〈b, c〉
have labels lx, ly = TRUE, then the candidate cz = 〈a, c〉 must have the label lz = TRUE.
When automatic methods generate a set of matchings, these matchings are often incon-

sistent with each other in the sense that they violate the constraints above, resulting in
an uncertain matching network. The inconsistent matchings are referred to as uncertain

Fig. 4 Cycle constraint violation

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 9 of 29

matchings. To help detect such inconsistencies, some methods rely on heuristics inspired
in studies on mapping messages between P2P systems [32, 34]. The constraints used in
our work are domain-independent, and other constraints may be added depending on the
matching task if needed.
Some methods [16–19] address the schema matching network problem when a global

schema is known and can be matched against the other schemas. The MGS framework
[16] aims at matching input schemas by finding correspondences between them and a
predefined schema. Corpus-based schema matching [17] builds a corpus of schemas in
a given domain to improve matching algorithms. The corpus is a collection of schemas
and mappings between some schema elements. Schemas in the corpus are related but
need not be mapped to each other. Since different designers defined the schemas, the
corpus has several representations of each concept in the domain. When new schemas
are matched, their elements are matched against the set of concepts. Holistic schema
matching (HSM) [18] uses a similar strategy but focuses on matching across query
interfaces.
Other methods apply schema matching network techniques in similar problems:

Nguyen et al. [19] face the problem of integrating several product descriptions from
online stores into their catalog, which plays the role of a global schema. The work by Toan
et al. [20] addresses the problem by using a probabilistic model to find common concepts
in different schemas.
Alani and Saad [35] propose a schema matching method to create clusters of elements

from multiple schemas, which represent different concepts among them. The method
consists of two phases: creating an ontology based on schemas and cluster elements based
on lexical and semantic similarities. In the first phase, the method performs a preprocess-
ing of elements by removing stopwords, punctuation, and unwanted characters. Also, it
decides which elements shall take part in the clustering stage based on TF-IDF scores.
The second phase relies on XBenchMatch [36], a benchmark involving a set of criteria
for testing and evaluating schema matching tools. Specifically, the method uses XBench-
Match as a semantic dictionary to help generate semantic similarities. Elements selected
in the first phase with high semantic similarity are clustered together. When new ele-
ments are matched against the ontology, the method uses Cosine, Dice, and Jaccard to
compute lexical similarities. The authors performed experiments in two datasets with F-
measure ranging from 0.86 to 0.92. The authors do not clarify if the method generates a
final schema. They also do not present statistics about unmatched elements.
The methods above address the schema matching network problem by focusing on

creating clusters of similar elements from several schemas. Each one has its particular
strategy, such as using statistical information or semantic dictionaries. Some methods
make a slight change in the problem and consider that the final global schema is known,
matching all schemas against the global schemas. Unlike the clusteringmethods, our work
considers network constraints that are not captured in clusters. For instance, elements
fname and lname from the same schema might end up in the same cluster. Also, our work
does not depend on specific domain dictionaries, and it does not consider that a global
schema is known. Even though these assumptions can be valid for many domains, such
as product information, that do not change over time, we believe that is not the case to
consider as applications evolve and becamemore complex. Besides that, our method con-
siders using other methods to generate base matches and, from that, finds other unknown

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 10 of 29

matchings. Finally, our method leverages the user experience to help improve matching
results without demanding too much user effort compared to previous approaches.

Schema reconciliation networks

The methods proposed over the years can achieve a good performance on some datasets.
However, they cannot be expected to yield a satisfactory result in general. Since matchers
rely on automatic techniques, their result is inherently uncertain. In practice, data inte-
gration processes often include a post-matching phase, in which matchings are reviewed
and validated by an expert [9].
In our work, we consider the schema reconciliation approach, which adopts a post-

matching phase where a human expert reviews, validates, and corrects the generated
matchings [37]. The reconciliation phase occurs after a schema matching method is
executed as it generates many mismatches and many uncertain matching answers. The
generated answers are submitted to a user (or a crowd of users) to an assertion. As
evidenced by Duchateau et al. [38], it is most advantageous to assert generated correspon-
dences than providing matching examples, i.e., it is easier to validate or not a discovered
mapping than manually browsing large schemas for adding new matches.
As representatives of methods that adopt the reconciliation approach, we highlight the

works by Hung et al. [9] and ArgSM [37]. The work by Hung et al. [9] proposes a model
for probabilistic matching networks. It takes the output of a matching system, and it con-
structs a network that contains the schema elements matched and a confidence score
associated, both provided by the matching system. The user is requested to assert incon-
sistencies with the lowest confidence scores; with each new user assertion, scores are
recalculated, such as inconsistencies. Themethod runs until all inconsistencies are solved,
or it reaches a user budget.
ArgSM [37] is a framework to help the process of reconciling a network of schemas.

Authors propose a representation that captures the expert’s beliefs and enables reason-
ing about their inputs. The framework can detect conflicts in assertions and guide the
resolution by re-asking users. Unlike the previous work, ArgSM can leverage a crowd
of user experts and manage their opinions. Others consider using a crowd of users
when reconciliating a matching network [33, 37]. They consider, besides the assertions of
matching answers, the quality of the users based on their domain knowledge and previous
assertions.
To address the participation of the specialist in the reconciliation process experiments,

we assume as well as all mentioned works that she shall always give correct assertions
about matching candidates and we shall consider an unlimited assertion budget. We also
address the reconciliation as a step of the matching process. We consider the reconcilia-
tion task with a single user with no optimizations regarding the order of questions asked,
i.e., we do not intend to minimize the number of asked questions as other works may
focus. The reconciliation is only performed to show that our method can achieve even
higher results regarding the matching quality. We leave the optimization as future work.
To summarize, the schema matching network problem brings some challenges such as

the high number of candidates to evaluate, the network constraints to comply, and the
difficulty of having a large number of labeled examples and unbalanced datasets (in the
case of machine learning approaches). Our study aims to tackle such issues by taking
answers from black-box systems as training examples, using network constraints to help

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 11 of 29

build a good and informative training set, and finally, still take advantage of the user effort
to help improve final matching quality, without making it a laborious task.

Usingmachine learning in schemamatching networks
To address the schema matching network problem, we exploit machine learning tech-
niques to overcome difficulties that arise in this scenario. In this section, we present a
family of methods that leverage such an approach. First, we present RF4SM—Random
Forest for Schema Matching, a machine learning-based technique to address the schema
matching network problem. Next, we present RF4SM-B—Random Forest for Schema
Matching Boosting, which is an extension of the first method that acquires training
instances with no labeling effort by taking answers from unsupervised heuristic meth-
ods while maintaining matching quality. Finally, we present RF4SM-B-Rec, which brings
the specialist back into the process by asking them to assert matching answers produced
by our method. By doing so, users can contribute to improving matching quality, but the
method spares them from exhaustive work.
Similar to the methods discussed in the “Background and related work” section, we

address the schema matching task as a classification task, where, given a pair of elements
from two schemas

〈
eS1 , eS2

〉
(or a matching candidate), the method should assign a label

TRUE if the elements are a real matching, or FALSE otherwise.
We started developing our first method by testing several supervised learning

approaches to verify if there is a suitable technique for the schema matching network
problem. Considering that the same labeled set of instances is given as the training set of
examples, we can generate several models for the matching task and use a ground truth
to evaluate such models.
This draft procedure is described in Algorithm 1. For a given matching task, take a

random subset containing p% of the candidate pairs of schema elements, annotate these
pairs, and generate a labeled set of examples Itr (line 3). Then, carry out a training pro-
cess according to a supervised learning algorithm and create a model Sup_Model (line 5).
Sup_Model can be used to classify the remainder of unlabeled instances, the test set Its
(line 6).

Algorithm 1 Draft_Algorithm(C, p)
1: Let C be the set of all matching candidates from the matching network
2: Let p is the percentage of training instances used
3: Itr ← randomSubset(C, p)
 random training instances
4: Its ← I \ Itr
 test set
5: Sup_model ← SupervisedLearningAlgorithm(Itr)

 Generates models using one of the machine learning methods available
6: (M+,M−) ← classify(Sup_model, Its)
 classified instances
7: returnM+
 matching candidates classified as TRUE

The “Experimental evaluation” section details an experiment we carried out using this
procedure and the results obtained for several well-known learning strategies tested. The
best supervised learning algorithm, according to this experiment, was chosen to be the
base classifier of the method.

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 12 of 29

RF4SM—Random Forest for SchemaMatching

The experiments for choosing the most suitable approach to the schema matching
network problem are further detailed in the “Experimental evaluation” section. We con-
cluded that Random Forest was the most suitable algorithm and it was chosen as the base
classifier for RF4SM. The Random Forest algorithm is simple and flexible enough to be
applied to different input types [39] and easy to implement. In addition, other methods,
such as Yet Another Matcher [14, 31], the work by Rong et al. [40], ALMa [29], and the
work by Reis et al. [41], used forests of trees or random forests as learning algorithms to
address the classic schema matching problem. This fact also backed up our decision to go
with decision trees as the base learning approach.
Once the base classifier is selected, RF4SM can be defined according to Algorithm 2.

RF4SM receives as input a network of schemas to be matched. By combining all possible
pairs of elements between schemas, the algorithm creates a set C of matching candi-
dates. A random subset of the matching candidates is labeled and used as the training
set Itr . Next, the RF4SM model is generated by training according to the Random For-
est technique. Finally, the model is used to evaluate the matching candidates. Those who
get the label TRUE will compose the answer of the method, i.e., the schema matching
networkM+.

Algorithm 2 RF4SM_Algorithm(C)
1: Let C be the set of all matching candidates from the matching network
2: Let p be the percentage of training instances used
3: Itr ← randomSubset(C, p)
 random training instances
4: Its ← I \ Itr
 test set
5: RF4SM_model ← randomForestSupervisedLearning(Itr)
6: (M+,M−) ← classify(RF4SM_model, Its)
 classified instances
7: returnM+
 matching candidates classified as TRUE

While this method can generate a different model for each newmatching task, it may be
problematic in some tasks to learn goodmodels with a small number of examples. RF4SM
can be a suitable option when a crowd of users is available to provide large amounts of
matching examples ([33, 37]). However, that might not always be the case. To cope with
that scenario, we evolved our method to take into consideration two aspects: respecting
network constraints and obtaining a large and reliable amount of training examples.

RF4SM-Boosting

To obtain training examples without user labeling, RF4SM-B (RF4SM-Boosting) uses
heuristic methods to generate such examples. As these heuristics usually generate unreli-
able matchings (false positives), RF4SM-B cleans the set of generated examples using the
network constraints presented in the “Schema matching networks” section as filters.
The rationale is to avoid false positives in the training set and possibly to learn better

models. Also, network constraints help identify negative examples. Thus, this strategy
is useful for generating both positive and negative training examples. For example, in
Fig. 3, if the matching a is given as a TRUEmatching, we can automatically label matching

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 13 of 29

candidates b and c as FALSE matchings. We obtained three labeled instances with only
one given label.
We describe RF4SM-B in Algorithm 3. First, the algorithm submits the input set of

schemas to a heuristic base method. Such a method is treated as a black box to our
method. This method generates a set of possible positive matches A+ that is filtered using
the network constraints. The filtering generates a set of accepted matchings A+, a set of
rejected matchings A−, and a set of uncertain matchings U. The accepted matchings are
the ones that do not conflict with any other. The rejected matchings are automatically
generated using the network constraints as filters, as described in the example of Figs. 3
and 4. The uncertain matchings are the set of matchings that conflict with each other. The
accepted and the rejected matchings are used in the training step. The RF4SM-Bmodel is
then generated using the Random Forest algorithm. Finally, the model is used to evaluate
the matching candidates. Candidates classified as TRUE matchings compose the schema
matching network.

Algorithm 3 RF4SM-B_Algorithm(C,A+)
1: Let C be the set of all matching candidates from the network
2: Let A+ be the set of positive answers given by the base method
3: (A+,A−,U) ← networkConstraintsFilter(A+)

 Network constraints produce three sets: A+, A− and U

 A+: matchings labeled TRUE and accepted by the network constraints

 A−: matchings rejected by the network constraints.

 U : uncertain matchings, i.e., they conflict with each other.

4: Itr ← A+ ∪ A−
 the training set is the union of positive and negative sets
5: RF_model ← randomForestSupervisedLearning(Itr)
 Training
6: (M+,M−) ← classify(RF_model, I)
 Classifying instances
7: returnM+
 Matching candidates classified as TRUE

The RF4SM-Bmethod is an evolution of RF4SM that eliminates the user effort in label-
ing examples by using the answers of a black-box system. A further improvement would
be to ask the user to validate the results in a task called reconciliation. This task is usually
less laborious than labeling training examples.

RF4SM-B-Reconciliation

As it occurs after the schema matching process finishes, the reconciliation task can be
optional. However, it is a useful step as it can help to improve the results of a matching
network process. The user participates in the process by reconciliating matching answers,
i.e., the user acts by accepting or rejecting matching answers (ormatching candidates).
This process does not require much knowledge from the user (e.g., compared to tuning

the parameters of a method) apart from knowing the schemas involved. Also, it is shorter
than the job of labeling all training examples. In fact, the number of training instances is
often even higher in the networked scenario, making the labeling process more prone to
human errors.
In RF4SM-B-Rec, the user is invoked only to assert uncertain matchings, i.e., the ones

that conflict with themselves. Hence, their job is less laborious than classic approaches

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 14 of 29

when they would review all generatedmatches. In Algorithm 4, we describe this approach.
After running RF4SM-B, the set of uncertain matchings U is submitted to user asser-
tion, and the algorithm can incorporate accepted answers by the user (U+) in the final
matching network (M+).

Algorithm 4 RF4SM-B-Rec_Algorithm(C,A+)
C is the set of all matching candidates from the network
A+ is the set of positive answers given by the base method

1: M+ ← RF4SM-B_Algorithm(C,A+)
 presented in Algorithm 3
2: (M+,M−,U) ← networkConstraintsFilter(M+)

 The network constraints produce three sets of instances :

 M+ (accepted),M− (rejected) and U (uncertain)

3: (U+,U−) ← userReconciliation(U)

 The user accepts or rejects instances in the reconciliation process
4: M+ ← M+ ∪ U+
5: returnM+
 matching candidates classified as TRUE

In the “Evaluating RF4SM-B-Rec” section, we present experiments to verify the
improvement provided by a user when reconciliating the results of RF4SM-B. We com-
pare the effort made by a user when reconciliating automatic methods and RF4SM-B and
how the use of different base systems can impact the final stage.

Experimental evaluation
Aiming at validating our assumptions and claims, we performed an extensive set of exper-
iments to evaluate our methods when running over datasets previously used in schema
matching experiments reported in the literature.

Datasets

All of the experiments we carried out used a collection of five datasets. Each dataset rep-
resents a schema matching network task and contains more than two schemas. All of the
schemas in a dataset belong to the same domain. Table 2 presents an overview of the
characteristics of the datasets.
These datasets were used previous in experiments reported by [42] and [11] (betting);

[43] and [9] (business); [18] (magazine, book); [16] (book); and [9],[2] and [29] (order).
We stress that, in all cases, the actual number of matches to be found is very low com-

pared to the number of candidate matches, making each task a challenging one. Even

Table 2 Experimental datasets and their characteristics, organized by domain

Domain Betting Business Magazine Book Order

#Schemas in the network 12 3 12 4 5

#Matching tasks 66 3 66 6 10

#Candidate matchings 45013 20840 87200 7882 49192

#Correct matchings 863 177 810 44 298

#Elements per schema (avg) 26 84 36 36 72

#Elements with a match (avg) 18 74 16 9 46

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 15 of 29

though these datasets have been used in previous work, some were made available with-
out their ground truths. Therefore, we hadmanuallymatched the schema networks before
performing our own experiments. Also, the ground truths of every matching network are
guaranteed to comply with all the constraints in the network.

Evaluation metrics

Let M be the set of all matching candidates, and C ⊂ M be the set of correct match-
ings for a given matching network. Let A be the set of all answers given by a method, i.e.,
the set of matches generated by some method. We evaluate the effectiveness of a method
according to precision

(|A∩C|
|A|

)
, recall

(|A∩C|
|C|

)
, and F1-score

(
2∗precision∗recall
precision+recall

)
. Notice

that, due to unbalancing number of valid and invalidmatching candidates, the invalid can-
didates being the vast majority, we only consider the positive candidates in our evaluation.
Furthermore, finding valid matching candidates is the real goal of a matching task.
Precision and recall are largely used in the schema matching field. However, they can-

not be used alone to evaluate the quality of a matching network. Precision measures how
correct the correspondences returned are, i.e., the higher is the number of correct corre-
spondences returned by a method, the higher is its precision value. Recall measures how
much the set of answers returned to cover the perfect solution. In other words, the lower
the recall, the higher the number of correct correspondences missing.
The F1-score is often used to compact both metrics in one single value. It is a har-

monic mean of the two values. It treats both precision and recall as equally important
scores. Duchateau et al. [38] argue that recall is more important than precision from the
user point-of-view, as it is harder to find undiscovered correspondences than to assert
incorrect correspondences returned by a method. In this work, we do not intend to pro-
pose a new evaluation method. Hence, we rely on F1-score to represent an overall quality
measure of matching results.

Base systems

As described in the “Using machine learning in schema matching networks” section, our
methods RF4SM-B and RF4SM-B-Rec use a “black box” system as its base provider
of matching candidates. As these base systems, we used unsupervised methods that use
heuristic approaches, namely, the well-known methods COMA/COMA++ [2, 11] and
Similarity Flooding (SF) [7]. Both base systems are available online. 34

We selected the library of matchers available in COMA/COMA++ and Similarity
Flooding to be the base matchers for all learning techniques we experimented with. All of
the answers given by the methods were collected, and those were used to build a network
of answers which can be evaluated according to the metrics mentioned above.
In COMA/COMA++, we used the best combination of matchers and parameters

reported by the authors [2, 11]. They report that in its best configuration, COMA runs
all the hybrid matchers, aggregates matrices by their Average, matches in both directions,
and selects matches using theMaxDelta strategy (max = 1 and � = 0.02).
All of the results reported for Similarity Flooding were obtained by running the

method in its default configuration. Similarity Flooding runs by making a string matching

3https://sourceforge.net/p/coma-ce
4http://infolab.stanford.edu/~melnik/mm/rondo/

https://sourceforge.net/p/coma-ce
http://infolab.stanford.edu/~melnik/mm/rondo/

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 16 of 29

between schema element names, then applies the flooding algorithm that propagates the
similarities through nodes in the graph. Finally, it applies filters to select the matchings.
We note the base systems are treated here as black boxes, i.e., we can change them for

any system that generates matching candidates. For this study, we chose to use two of
the best-known unsupervised matching systems. As they are unsupervised, the user input
does not impact the evaluation regarding the number of user inputs. All of the results
reported for machine learning algorithms are the average of 30 runs, each one with a
different random seed.

Baselines

As representatives of heuristic approaches, we also use COMA and Similarity Flood-
ing (SF) as baselines. To the best of our knowledge, both methods were never presented
addressing the schema matching network problem. However, they can be adapted to run
in the networked setting by running each method taking every combination of pairs of
schemas (classic schema matching) and creating a network of matching answers.
There are several machine learning methods in the literature for the classic schema

matching scenario [14, 19, 28, 29]. Thus, instead of adapting each method to the net-
worked scenario, we constructed network-oriented methods with their core classification
algorithms and ran experiments with them.
The methods for the classic schema matching use many different kinds of machine

learning algorithms: the method by Gal [28] uses the statistical-basedmodelNaive-Bayes;
YAM [14] uses tree-based algorithms such as J48 and functions such as Logistic Regres-
sion and Bayes Networks; the method by Nguyen et al. [19] also uses Regression and ALMa
[29] is also based on a tree-like model.

Evaluating machine learning algorithms for the schemamatching networks

In this section, we evaluate different machine learning methods previously used for the
classic schema matching scenario in the context of the schema matching network task.
This experiment resulted in choosing Random Forests as our base classifier. This exper-
iment also provides our machine learning baseline. The second experiment tested the
random forests against the base methods (COMA and SF) to verify if the learning method
can achieve results comparable to the heuristics used by the family of RF4SMmethods.
Setup. We performed experiments with several machine learning algorithms featured

in the Weka package [44]. We ran each classifier with five different sizes of training sets,
ranging from 10 to 50%. We note that 50% of labeled matching instances can represent
more than 40,000 candidate pairs for the schema matching datasets we use, which is a
high number of labeled instances. Realistically, this number of labeled examples seems
unfeasible once that examples from one matching task can hardly be used in another task
of a different domain. The remainder of the instances were used in the test set. All the
results reported are an average of 30 runs. We tested all the algorithms in our five exper-
imental datasets. For the first experiment, the average of the results in the five datasets
corresponds to the final result. The algorithms have been used in learning approaches to
the matching problem. For details of the parameters required by algorithms, please refer
to the Weka documentation.5 The specific settings we used for each algorithm are as
follows:
5http://weka.sourceforge.net/doc.stable/

http://weka.sourceforge.net/doc.stable/

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 17 of 29

• AdaBoost: weightThreshold=100, baseClassifier= DecisionStump,
numberOfIterations=10;

• J48: unpruned=false, confidenceFactor=.25, subtreeRaising=true,
binarySplits=false;

• Logistic regression: maxIts= − 1, ridge=1.0E − 8;
• Random forest: numTrees=100,maxDepth=unlimited;
• Random tree: KValue=random,maxDepth=unlimited,minNum=1.0

Validating RF4SM

In this first experiment, we wanted to test which of a variety of popular classifiers were
best suited to the task of matching networks of schemas. We randomly divided the
instances into two groups for each of the five datasets: training and test sets. The training
set is given to each classifier to build models, then the test set is submitted to the models,
and we evaluated the classification according to our metrics. We repeated the experiment
with 30 different random seeds, varying the size of the training sets.
We report the average F1-score obtained by the classifiers in Fig. 5. The Random Forest

classifier achieved the highest average of F1-score, consistently improving when increas-
ing the training set. With this experiment, we established the Random Forest model as
the base classifier for the method. We point out that works such as YAM [14] and ALMa
[29], which address the classic schema matching task, also chose ensembles of trees as
their base classifier. From this point on, we referenced our method as Random Forest for
Schema Matching—RF4SM.
The learning strategies tested in this experiment are featured in several works that

address the classic schema matching task [14, 19, 28]. With that in mind, we decided
to take the learning algorithms as the representatives of these methods and considering
them as the baselines for the schema matching network task.

RF4SM and heuristic strategies—base methods

The next experiment was designed to evaluate the base classifier against the base meth-
ods. We ran RF4SM with training sets of different sizes ranging from 10 to 50% of each

Fig. 5 Avg. F1-scores by each classifier for training sets of different sizes

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 18 of 29

experimental dataset. This experiment aimed to estimate the volume of learning instances
required to achieve results comparable to the base methods. This volume ultimately indi-
cates the effort needed by a user for labeling examples before the matching process in a
supervised setting.
In absolute numbers, labeling 10% of instances means a user has to label at least 700

instances (in the smaller dataset), which is a high number of instances to label. We con-
sidered 50% was a big enough number of labeled instances to have available, even in a
hypothetical situation. As we already stated, having such a cumbersome task can lead to
human errors. Therefore, our study aims to ease the user effort as much as possible while
reaching high matching quality levels.
For brevity, we opted to show only the F1-score values achieved by RF4SM using 30%,

40%, and 50% of training, alongside the base methods in Fig. 6. On average, RF4SM with
50% of training instances reaches F1-score of 0.70, topping COMA’s F1-score (0.68), SF
reached 0.65 trailing RF4SM-30% (0.66). We also point out that RF4SM-40% achieved
the highest average precision (0.78), and RF4SM-50% achieved the highest precision in a
single task (0.89).
In absolute numbers, RF4SM needed an average of 16800 examples to train its models,

which is a high number of instances to get with a high cost as they must be labeled. The
next set of experiments addresses this issue.

RF4SM-B: experimental evaluation

We designed the following experiments to test our boosting strategy. We performed
an experiment to verify differences in the training sets, such as accuracy and quantity
of positive examples. Additionally, we evaluated how RF4SM-B compares to previous
methods.
Setup. In this set of experiments, we evaluated the methods in all five datasets (pre-

sented in Table 2). As RF4SM-B contains a random component, all of the results of the
method are the average of 30 runs.We ran RF4SM-B using the two different base systems,

Fig. 6 Average results of supervised and heuristic methods in the five datasets

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 19 of 29

COMA and SF and trained the models the training sets generated by each of these meth-
ods. Notice that we used COMA and SF both as base methods and as baseline heuristic
methods for this set of experiments.

Obtaining training instances

The network constraints presented in the “Schema matching networks” section are good
indicators of the integrity of the matching network. When the matching network has a
high number of inconsistencies, i.e., the network is uncertain, it is an indication that the
network has many mismatches.
In this experiment, we want to inspect the networks of matchings created by the

answers of the base methods to assess if they have a notable number of inconsistencies
and how large this number is. Ultimately, this network of answers will be used as the
automatically labeled training set for RF4SM-B.
To build the networks of answers for each of the five domains, we submitted every

combination of pairs of schemas to the heuristic methods. After that, all of the methods’
answers were gathered and inserted into a network of answers. We counted every time a
match candidatem violated a constraint. We also had the counters divided by the type of
constraint violated. Table 3 presents all the results. Type I constraints refer to one-to-one
constraints, and type II constraints refer to cycle constraints.

Training with filtered instances

To be able to provide the automatically labeled examples to RF4SM-B correctly, we used a
filter based on the network constraints to prune inconsistentmatchings of the training set.
In the next experiment, we compare how RF4SM-B performs using filtered and unfiltered
training sets against baselines.
We report two runs of RF4SM-B, each one with a different base system. We compared

the results against the base system (heuristic baseline) and the RF4SM (supervised learn-
ing baseline). The first run uses COMA as a base system, and the F1-score values achieved
are depicted in Fig. 7. The second run uses Similarity Flooding as a base system,
and the results are reported in Fig. 8. In both cases, we verified the statistical significance
of the results using the Welch two-sample t-test, with all p-values well below 0.05.
RF4SM-B can achieve better results of the F1-score in the majority of the datasets. On

average, it outperforms both base systems, COMA and SF, and RF4SM while using no user
input. Still, regarding the training set, the filtering process managed to acquire around
40% of labeled examples on average (similar to RF4SM). Yet, those labels are not validated
by a user and are not guaranteed to be 100% correctly labeled.
We also notice that using the filtered training set helped to learn better models as evi-

denced by higher precision values without compromising recall. When the number of
inconsistencies increases, so does the gain observed in the matching results.

Table 3 Number of constraints violated per matching network task

Dataset Betting Business Magazine Book Order

COMA Type I 5 2 6 6 15
Type II 248 20 278 16 211
Total 253 22 284 22 226

SF Type I 0 0 0 0 0
Type II 364 0 305 10 72
Total 364 0 305 10 72

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 20 of 29

Fig. 7 RF4SM-B (unfiltered and filtered) compared to RF4SM, with COMA as the base system

RF4SM-B managed to train a random forest without asking the user for labels. How-
ever, users can be a valuable source of information, and they can still enhance matching
results. Hence, in the next step, we will include user knowledge in the process by asking
them to validate matchings in the reconciliation process.

Evaluating RF4SM-B-Rec

After successfully acquiring training instances sparing users of the job of labeling them,
we wanted to improve the matching results by using their powerful source of information
by asking to reconciliate the network of schemas generated. The next experiment was
designed to verify if RF4SM-B-Rec can achieve better results than reconciliating from
the base systems.
For this experiment, we took the network of answers from our method, separated the

uncertain candidates (the ones that have a conflict with another answer), and submitted
them to user assertion. The user can validate a candidate as a correct answer or reject it
and remove it from the pool of answers. After the reconciliation, we measured precision,
recall, and F1-score.
Setup. In this set of experiments, we evaluated the methods in all five datasets from

Table 2. As RF4SM-B-Rec contains a random component, all of the results presented are
the average of 30 runs. The settings of other methods featured in this section remains the

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 21 of 29

Fig. 8 RF4SM-B (unfiltered and filtered) compared to RF4SM, with SF as the base system

same as in previous experiments. In this study, we consider that the users give only reli-
able assertions, i.e., if they confirm a candidate as a TRUEmatching, then we can assume
that the matching is TRUE. The same applies to FALSE matchings. As we did not use
any optimization strategy aiming at minimizing user effort, the order in which matching
candidates are presented for review does not affect the outcome.
We present the results of this experiments in Fig. 9a and b, for which we also ver-

ified statistical significance using the Welch two-sample t-test, with all p-values well
below 0.05.
We show the F1-scores reached in Fig. 9a when we reconciliate the network of answers

from RF4SM-B trained with data from COMA. On average, the RF4SM-B reconciliation
reaches an F1-score of 0.83 against a score of 0.81 from COMA’s reconciliation. However,
COMA’s reconciliation requires muchmore user intervention, as shown in Fig. 10a. Besides
similar performance considering the F1-scores, from the point of view of an expert that
performs the reconciliation manually, it is most advantageous to use RF4SM-B, as its
task is reduced by five times, i.e., they have to label five times more matching candidates
manually.
We also performed a similar experiment considering the automatic learning set gath-

ered from Similarity Flooding’s answers. The F1-scores reached are shown in Fig. 9b. On
average, RF4SM-B achieved an F1-score of 0.77 against 0.75 from Similarity Flooding.
The behavior was similar to that observed in COMA’s experiment. The user had to label

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 22 of 29

Fig. 9 F1-scores achieved when performing reconciliation at the end of the process

a larger amount of Similarity Flooding’s answers to reach a comparable F1-score. The
amount of labels given by the user in the reconciliation task is given in Fig. 10b. In this
experiment, the user effort also was reduced by approximately six times.
For both base systems, RFMS-B-Recmanaged to findmorematchings that were undis-

covered previously, hence achieving higher values of recall, with an average of 0.77 against
0.69 (COMA-Rec) and 0.61 (SF-Rec). Also, RFMS-B-Rec maintained a high average
precision (0.89), compared to the perfect precision, as if the reconciliation was performed
with the base method answers.
Finally, we compare the results of RF4SM-B and RF4SM-B-Rec to see how much the

reconciliation process can improve the result of our method. We show the results of

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 23 of 29

Fig. 10 User effort in the reconciliation of the networks

precision, recall, and F1-score for the methods using COMA as the base system in Fig. 11,
As expected, the reconciliation process leads to better results, achieving an average F1-
score of 0.83 while asking for a low number of labels from the user, i.e., 55 per dataset on
average.
The same behavior can be observed when analyzing the results of the method with SF

as the base system. Figure 11 presents these results. On average, RF4SM-B-Rec achieved
an F1-score of 0.77, and the user labeled 49 candidates per dataset, indicating that our
method can be effectively applied with different unsupervised schema matching systems
as a black box. Also, by comparing the results obtained with both base systems, the better
the base system, the better will be the boosting provided by RF4SM-B-Rec.

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 24 of 29

Fig. 11 Comparison between RF4SM-B and RF4SM-B-Rec using COMA as the base system

As before, the results we present in Figs. 11 and 12 have statistical significance verified
by the Welch two-sample t-test, with p-values <0.05.

Summing up

To sum up the results from our experiments, Fig. 13 shows the average F1-score of the
methods discussed in the sections above and divided them into groups, according to the
type of user interaction in the matching task, depending on how much user effort they
use: exhaustive, none, or some user effort.
The first group, “Exhaustive User Effort,” consists of the supervisedmethod RF4SM run-

ning with different sizes of training. Methods in this group require an expert to provide
a training set containing a massive amount of labeled examples. Although RF4SM can
achieve higher values in the metrics than the other methods, it required at least 10% of
datasets, which could mean at least 8000 labeled matching examples. This can be unfea-
sible for typical requirements of real applications. As we could observe in Fig. 6, the more
training, the better the model generated and the better the matching quality regarding F1-
score. Generally, the learning approaches achieve better results than heuristics. However,
they require that a large amount of training data is available, which might not be true for
some matching tasks.
The group “NoUser Effort” includes the heuristicmethods, COMA and SF, and the semi-

supervised boosting-based method RF4SM-B. None of the methods uses any input from

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 25 of 29

Fig. 12 Comparasison between RF4SM-B and RF4SM-B-Rec using SF as the base system

experts (as in labeling matching examples), even though they can have parameters tuned
before their execution. Typically, the answers provided by these methods are reviewed
by the expert after the execution. COMA and SF take into consideration the hierarchical
aspect of the schemas, but they do not consider the network constraints. Hence, they
rely on their heuristics that prioritize precision, while RF4SM-B can create more gen-

Fig. 13 F1 values by the methods according to the type of user participation in the process

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 26 of 29

eral models that may lack precision in favor of recall but whose output can be validated
later. Usually, the methods in this group can produce good matching results. However, to
achieve higher levels of results, they rely on a specific tuning of parameters. The tuning
usually requires that a domain specialist is available; it also requires the knowledge of the
inner workings of methods. In addition, tuning performed for one matching task may not
produce the best results for a different task, making this hard to generalize.
The group “Some User Effort” includes methods that use the reconciliation stage. Both

COMA and SF can improve their previous results but at a higher cost of user effort. On
average, the user reviews over 300 candidate matches. As RF4SM-B-Rec uses the net-
work constraints to prune their answers, a high number of answers can be automatically
invalidated. Besides, the network constraints help to gather a more reliable automatic
training set of examples, thus generating better learning models. By invalidating answers,
the constraints also help to ease the user effort. RF4SM-B-Rec reduced the reconcilia-
tion task by at least four times in each dataset. RF4SM-B-Recwas able to achieve slightly
higher values of F1-score while reducing the effort needed to validate the final matching
answers. It can potentially be used with any base system as a black box. We also note that
the methods in this group produce better matching results compared to the ones in the
“Exhaustive User Effort” group, even though they use a smaller amount of user inputs. On
average, 300 candidate matchings were reviewed in this group, which is a much smaller
number than 10% of the smaller dataset available (Book dataset), which corresponds to
around 700 examples.
Notice that although it is not common to group and compare heuristic methods to

machine learning methods, we choose to do it intending to see how much different
amounts of user effort can interfere in matching results. In addition, we show that more
user participation does not translate to better results, and we can achieve better match-
ing results if using the user input in a more intelligent fashion aligned with network
constraints.

Conclusions and future work
In this paper, we presented a study with a family of methods that apply machine learning
techniques to the schema matching network problem. The methods carry out the match-
ing process in a network of schemas while respecting network integrity constraints. Such
constraints define rules to guarantee that the matching network remains consistent. Also,
they might be used to help prune erroneous matches that may be generated by schema
matching methods such as ours.
First, we presented RF4SM, which uses machine learning algorithms to find correspon-

dences between several schemas that form a network. In our experiments, we showed
that the method is suitable for the problem of matching networks. The method reaches
precision values around 0.70, the highest average among the systems tested.
Next, we presented RF4SM-B, which is an evolution of the previous method. It

addresses the obstacle of not having a large number of labeled training examples by using
heuristics methods to generate training examples automatically. We showed how the net-
work constraints can be used to identify training examples that are likely to be incorrect
and the impact they may have on the final results. By using the constraints, we could pro-
duce more reliable training sets and using a black-box system; we could spare the user

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 27 of 29

of the job of labeling matching examples. As a result, on average, RF4SM-B achieved an
F1-score of around 0.73.
Finally, we present RF4SM-B-Rec, which addresses the use of reconciliation in the

matching process. In this stage, users are invoked to assert the matchings generated by
our method, and they can accept or reject these matchings. As previous methods do not
consider integrity constraints, they overlook this valuable source of information to prune
wrong correspondences. In our experiments, we show that RF4SM-B results can be even
better with the reconciliation process. We also show that F1-scores achieved are higher
than other methods while asking for a lower number of labels. The experiments show that
the user effort in the task can be reduced up to 6 times.
As future directions of our work, we recognize that there is still room for improvement.

As evidenced by Hung et al. [9], the order by which the user asserts matchings can be
optimized if they are guided to solve inconsistencies in the network. In other words, this
means their effort can be reduced even more to achieve the same F1-scores.
We also point out that improvements can be made in aspects related to the machine

learning techniques we use. In this study, we considered it out of scope to tune such
methods or to find more complex methods. Currently, we used classic machine learning
techniques that were largely used in previous methods in the classic schema matching
field.We recognize that newmethods are emerging and they may yield to ways for obtain-
ing even larger amounts of training data, which is one of the main challenges of the
schema matching network problem; also, learners that handle unbalanced classes might
be considered as feasible options.
Finally, as seen in the experiments, a reliable training set leads to a more consistent

network of matchings. Since we use a black-box system to generate the initial training set
of examples, we could also study changing the base system to tuned versions and see how
the learning is impacted by it.

Acknowledgements
The authors would like to thank the authors of COMA/COMA++ [2, 11] and Similarity Flooding [7] for making their code
available online.

Authors’ contributions
Both authors developed the whole work, discussed the results, and contributed to the final manuscript. The authors read
and approved the final manuscript.

Funding
This work was supported by projects SocSens(CAPES/PCGI 88887.130299/2017-01), MOBILIS (FAPESP
MCTIC/CGI,2018/23064-8), MMBIAS (FAPESP MCTIC/CGI, 2020/05173-4), and by authors’ individual grants from CNPq and
CAPES.

Availability of data andmaterials
All datasets used in the experiments are available online, as indicated in the “Experimental evaluation” section.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 2 March 2021 Accepted: 25 October 2021

References
1. Bonifati A, Velegrakis Y (2011) Schema matching and mapping: from usage to evaluation. In: Proceedings of the 14th

International Conference on Extending Database Technology. Association for Computing Machinery, New York.
pp 527–529

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 28 of 29

2. Do H-H, Rahm E (2002) COMA: a system for flexible combination of schema matching approaches. In: Proceedings
of the 28th International Conference on Very Large Data Bases. Morgan Kaufmann Publishers, San Francisco.
pp 610–621

3. Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with cupid. In: Proceedings of the 27th
International Conference on Very Large Data Bases. The VLDB Endowment, New York. pp 49–58

4. Doan A, Domingos P, Halevy AY (2001) Reconciling schemas of disparate data sources: a machine-learning
approach. In: Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data. Association
for Computing Machinery, New York. pp 509–520

5. Bernstein PA, Madhavan J, Rahm E (2011) Generic schema matching, ten years later. PVLDB 4(11):695–701
6. Doan A, Halevy AY, Ives ZG (2012) Principles of Data Integration. Morgan Kaufmann, San Francisco
7. Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm. In: Proceedings

of the 18th International Conference on Data Engineering. IEEE Computer Society, New York. pp 117–128
8. Li Y, Liu D-B, Zhang W-M (2005) Schema matching using neural network. In: Proceedings of the 2005 IEEE/WIC/ACM

International Conference on Web Intelligence. IEEE Computer Society, New York. pp 743–746
9. Hung NQV, Tam NT, Miklós Z, Aberer K, Gal A, Weidlich M (2014) Pay-as-you-go reconciliation in schema matching

networks. In: Proceedings of the IEEE 30th International Conference on Data Engineering. IEEE Computer Society,
New York. pp 220–231

10. Popa L, Hernadez MA, Velegrakis Y, Miller RJ, Naumann F, Ho H (2002) Mapping XML and relational schemas with
CLIO. In: Proceedings of the 18th IEEE International Conference on Data Engineering. IEEE Computer Society, New
York. pp 498–499

11. Aumueller D, Do H-H, Massmann S, Rahm E (2005) Schema and ontology matching with COMA++. In: Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data. Association for Computing Machinery,
New York. pp 906–908

12. Peukert E, Eberius J, Rahm E (2011) AMC - a framework for modelling and comparing matching systems as matching
processes. In: Proceedings of the IEEE 27th International Conf on Data Engineering. IEEE Computer Society, New
York. pp 1304–1307

13. Cruz IF, Antonelli FP, Stroe C (2009) Agreementmaker: efficient matching for large real-world schemas and
ontologies. Proc VLDB Endowment 2(2):1586–1589

14. Duchateau F, Coletta R, Bellahsene Z, Miller RJ (2009) (Not) yet another matcher. In: Proceedings of the 18th ACM
Conference on Information and Knowledge Management. Association for Computing Machinery, New York.
pp 1537–1540

15. de Carvalho MG, Laender AHF, Gonçalves MA, da Silva AS (2013) An evolutionary approach to complex schema
matching. Inf Syst 38(3):302–316

16. He B, Chang KC-C (2003) Statistical schema matching across web query interfaces. In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data. Association for Computing Machinery, New York.
pp 217–228

17. Madhavan J, Bernstein PA, Doan A, Halevy A (2005) Corpus-based schema matching. In: Proceedings of the 21st
International Conference on Data Engineering. IEEE Computer Society, New York. pp 57–68

18. Su W, Wang J, Lochovsky F (2006) Holistic schema matching for web query interfaces. In: Proceedings of the 10th
International Conference on Advances in Database Technology. Association for Computing Machinery, New York.
pp 77–94

19. Nguyen H, Fuxman A, Paparizos S, Freire J, Agrawal R (2011) Synthesizing products for online catalogs. Proc VLDB
Endowment 4(7):409–418

20. Toan NT, Phan TC, Thang DC, Hung NQV, Stantic B (2018) Bootstrapping uncertainty in schema covering. In:
Proceedings of the 29th Australasian Database Conference on Databases Theory and Applications. Springer, New
York. pp 336–342

21. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10(4):334–350
22. Bellahsene Z, Bonifati A, Rahm E (eds) (2011) Schema matching and mapping. Springer, New York
23. Gal A (2006) Why is schema matching tough and what can we do about it?. SIGMOD Rec 35(4):2–5
24. Wagner RA, Fischer MJ (1974) The string-to-string correction problem. J ACM 21(1):168–173
25. Miller FP, Vandome AF, McBrewster J (2009) Levenshtein distance. VDM Publishing, Saarbrucken
26. ShiangW-J, Chen H-C, Rau H (2008) An intelligent matcher for schemamapping problem. In: Proceedings of the 2008

International Conference on Machine Learning and Cybernetics. IEEE Computer Society, New York. pp 3172–3177
27. Lee Y, Sayyadian M, Doan A, Rosenthal AS (2007) etuner: tuning schema matching software using synthetic

scenarios. VLDB J 16(1):97–122
28. Gal A, Sagi T (2010) Tuning the ensemble selection process of schema matchers. Inf Syst 35(8):845–859
29. Rodrigues D, da Silva AS, Rodrigues R, dos Santos E (2015) Using active learning techniques for improving database

schema matching methods. In: Proceedings of the 2015 International Joint Conference on Neural Networks. IEEE
Computer Society, New York. pp 1–8

30. Doan A, Domingos P, Levy A (2000) Learning source descriptions for data integration. In: Proceedings of the 3rd
International Workshop on the Web and Databases. Association for Computing Machinery, New York. pp 81–86

31. Ngo D, Bellahsene Z (2012) Yam++: a multi-strategy based approach for ontology matching task. In: Proceedings of
the 18th International Conference on Knowledge Engineering and Knowledge Management. Association for
Computing Machinery, New York. pp 421–425

32. Cudré-Mauroux P, Aberer K, Feher A (2006) Probabilistic message passing in peer data management systems. In:
Proceedings of the IEEE 30th International Conference on Data Engineering. IEEE Computer Society, New York. p 41

33. Hung NQV, Tam NT, Miklós Z, Aberer K (2013) On leveraging crowdsourcing techniques for schema matching
networks. In: Proceedings of the 18th International Conference Database Systems for Advanced Applications.
pp 139–154

34. Aberer K, Cudre-Mauroux P, Hauswirth M (2003) Start making sense: the chatty web approach for global semantic
agreements. J Web Semant 1(1):89–114

Rodrigues and Silva Journal of the Brazilian Computer Society (2021) 27:14 Page 29 of 29

35. Alani H, Saad S (2017) Int J Adv Sci Eng Inf Technol 7(5):1790–1797
36. Duchateau F, Bellahsène Z, Hunt E (2007) Xbenchmatch: a benchmark for xml schema matching tools. In:

Proceedings of the 33rd International Conference on Very Large Data Bases. Morgan Kaufmann Publishers, San
Francisco. pp 1318–1321

37. Nguyen HQV, Luong XH, Miklós Z, Quan TT, Aberer K (2013) Collaborative schema matching reconciliation. In:
Proceddings of the OTM 2013 Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE.
Elsevier, Amsterdam. pp 222–240

38. Duchateau F, Bellahsene Z, Coletta R (2008) A flexible approach for planning schema matching algorithms. In:
Proceedings of the OTM 2008 Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE.
Springer, New York. pp 249–264

39. Bishop CM (2006) Pattern recognition and machine learning (Information Science and Statistics). Springer, Secaucus
40. Rong S, Niu X, Xiang EW, Wang H, Yang Q, Yu Y (2012) A machine learning approach for instance matching based on

similarity metrics. In: Proceedings of the 11th International Semantic Web Conference. Elsevier, Amsterdam.
pp 460–475

41. Reis DG, Carvalho RN, Carvalho RS, Ladeira M (2017) Two-phase parallel learning to identify similar structures among
relational databases. In: Proceedings of the 16th IEEE International Conference on Machine Learning and
Applications. IEEE Computer Society, New York. pp 1020–1023

42. Duchateau F, Bellahsene Z (2010) Measuring the quality of an integrated schema. In: Proceedings of the 29th
International Conference on Conceptual Modelling. Elsevier, Amsterdam. pp 261–273

43. Drumm C, Schmitt M, Do H-H, Rahm E (2007) Quickmig: automatic schema matching for data migration projects. In:
Proceedings of the 16th ACM Conference on Conference on Information and Knowledge Management. Association
for Computing Machinery, New York. pp 107–116

44. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update.
SIGKDD Explor Newsl 11(1):10–18

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Abstract
	Introduction
	Background and related work
	Classic schema matching
	Heuristic methods
	Machine learning methods

	Schema matching networks
	Schema reconciliation networks

	Using machine learning in schema matching networks
	RF4SM—Random Forest for Schema Matching
	RF4SM-Boosting
	RF4SM-B-Reconciliation

	Experimental evaluation
	Datasets
	Evaluation metrics
	Base systems
	Baselines
	Evaluating machine learning algorithms for the schema matching networks
	Validating RF4SM
	RF4SM and heuristic strategies—base methods
	RF4SM-B: experimental evaluation
	Obtaining training instances
	Training with filtered instances

	Evaluating RF4SM-B-Rec
	Summing up

	Conclusions and future work
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

