
RESEARCH Open Access

An accelerated and robust algorithm for
ant colony optimization in continuous
functions
Jairo G. de Freitas1,2* and Keiji Yamanaka2

* Correspondence: jairo@iftm.edu.br
1Instituto Federal do Triângulo
Mineiro (IFTM), Uberaba, MG, Brazil
2Universidade Federal de
Uberlândia (UFU), Uberlândia, MG,
Brazil

Abstract

There is a wide variety of computational methods used for solving optimization
problems. Among these, there are various strategies that are derived from the
concept of ant colony optimization (ACO). However, the great majority of these
methods are limited-range-search algorithms, that is, they find the optimal solution,
as long as the domain provided contains this solution. This becomes a limitation,
due to the fact that it does not allow these algorithms to be applied successfully to
real-world problems, as in the real world, it is not always possible to determine with
certainty the correct domain. The article proposes the use of a broad-range search
algorithm, that is, that seeks the optimal solution, with success most of the time,
even if the initial domain provided does not contain this solution, as the initial
domain provided will be adjusted until it finds a domain that contains the solution.
This algorithm called ARACO, derived from RACO, makes for the obtaining of better
results possible, through strategies that accelerate the parameters responsible for
adjusting the supplied domain at opportune moments and, in case there is a
stagnation of the algorithm, expansion of the domain around the best solution
found to prevent the algorithm becoming trapped in a local minimum. Through
these strategies, ARACO obtains better results than its predecessors, in relation to the
number of function evaluations necessary to find the optimal solution, in addition to
its 100% success rate in practically all the tested functions, thus demonstrating itself
as being a high performance and reliable algorithm. The algorithm has been tested
on some classic benchmark functions and also on the benchmark functions of the
IEEE Congress of Evolutionary Computation Benchmark Test Functions (CEC 2019
100-Digit Challenge).

Keywords: Ant colony optimization, Continuous optimization, Optimization
problems, Nature-inspired heuristic approaches

Introduction
Many important and practical problems can be expressed as optimization problems.

These problems consist of finding the best solution among an exponentially large set

of possible solutions [1]. Optimization is the branch of mathematics that encompasses

the study of the quality of optimal solutions and the methods for finding these [2].

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of the
Brazilian Computer Society

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16
https://doi.org/10.1186/s13173-021-00116-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-021-00116-8&domain=pdf
http://orcid.org/0000-0001-9186-4581
mailto:jairo@iftm.edu.br
http://creativecommons.org/licenses/by/4.0/

Optimization problems occur in most disciplines such as engineering, physics, mathem-

atics, economics, administration, commerce, social sciences, and even politics.

Optimization problems abound in several engineering fields, such as electrical, mechan-

ical, civil, and chemical engineering.

The objective of the optimization process is to find the values of the decision vari-

ables that result in a maximum or minimum of a function called the objective function,

provided that these values meet a set of restrictions or conditions that, necessarily,

must be answered [3].

The numerical decision variables, manipulated by the optimization problems, can be

divided into continuous and discrete. A continuous variable can assume an infinite

number of values between two points. On the other hand, a discrete variable is one that

has a finite number of values between any two points, representing discrete quantities

[4].

Many classic optimization algorithms inspired by nature, based on the use of popula-

tion, have been proposed to solve optimization problems, for which robust solutions

are difficult or impossible to find in polynomial time using traditional approaches [5].

The fundamental principle of some of these algorithms uses a constructive method

for obtaining the initial population (initial feasible solutions) and a local search tech-

nique that gradually improves the solutions generated, considering that the individuals

(solutions) of this population evolve according to specified rules, which consider the ex-

change of information between individuals [6].

Within the evolutionary approach, emphasis is placed on evolutionary algorithms

(EA), such as Genetic Algorithms (GA) [7], Differential Evolution (DE) [8], and Genetic

Programming (GP) [9], and on the swarm-based optimization algorithms (SOA), such

as ant colony optimization (ACO) [10–12], artificial bee colony (ABC) [13], and particle

swarm optimization (PSO) [14].

The ant colony optimization strategy was initially created to solve discrete

optimization problems, such as combinatorial optimization problems (COPs). These

problems can be mapped through graphs, such as the traveling salesman problem [12],

shortest path problem [15], vehicle routing [16], and scheduling [17].

Dorigo et al. [10–12] developed the ACO (ant colony optimization). It is a computa-

tional strategy, based on the foraging behavior of real ants, which simulates the use of

ants, with the objective of solving the traveling salesman problem (TSP). The problem

is represented by a graph, where the vertices represent the cities, and the edges repre-

sent the path between the cities. To solve the problem, artificial ants are randomly ar-

ranged on the edges of the graph. Each ant chooses the next city on its route through a

probabilistic calculation, which considers the amount of artificial pheromone distrib-

uted on that path and the distance between the two cities. It is not possible to visit the

same city twice in one solution. During the route, each ant will release a certain

amount of pheromone along each part of the path followed, to influence the decision

of the path taken by the ants that come next. The amount of pheromone released is in-

versely proportional to the length of the path traveled. The more pheromone there is

on a path, the more attractive that route becomes. Likewise, the shorter the distance

between cities on this path, the more attractive that route becomes. This process is re-

peated until the total route of the traveling salesman for each of the ants is complete.

Hence, the paths between two cities on the graph that the ants traveled along the most

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 2 of 40

will have a greater amount of pheromone, compared to the less traveled paths. The

meta-heuristic will be repeated several times, where new ants will be generated at the

edges of the graph for further execution. The pheromone along each path will be main-

tained, but just as in nature, it will gradually evaporate with each run, allowing unprof-

itable paths to run out of pheromone after several runs of the algorithm. Over the new

iterations that are realized, it is possible to find better solutions, as the pheromones of

these solutions are reinforced, until the optimum path or a path near to the optimum

path is found.

The simplest approach for applying the ACO to continuous problems would be to

discretize the real value domain of the variables, that is, convert the real values into a

finite range of values [18]. Discretizing continuous variables is a complex task, since the

interval where the search will be carried out can be very wide, thus making

discretization impossible [19]. Another possible problem is that the optimal solution

may require a higher degree of precision than that contemplated by the values that

have been discretized. In such cases, if the optimal value is in a space not covered by

discretization, it will not be found.

The ACO proved to be very effective for working with discrete variables, but it dem-

onstrated limitations in problems with continuous variables. There are several pro-

posals put forward for solving this problem.

In the Continuous ACO (CACO) method [20], ants start the search process from a

base point, called a nest. In each iteration, ants store their best solutions in a set of vec-

tors. These best solutions are used probabilistically to guide the search process in the

next iteration. CACO has variations like CACO-DE [21], which performs a discrete

coding of continuous variables. The Continuous Interacting Ant Colony (CIAC) [22]

uses an interaction mechanism between ants, as well as the information left by phero-

mones along the paths traveled, which guides the search process. Another approach

that realizes optimization of problems with continuous variables is the after Pachycon-

dyla APIcalis (API) [23]. In this method, ants conduct their research in parallel around

a starting point, called a nest. The nest is moved periodically, based on the most suc-

cessful searches. According to Chen et al. [24], the abovementioned algorithms were in-

spired on the ACO, but do not strictly follow the structure of the ACO. Therefore,

they are considered algorithms related to ants and not, real extensions of the ACO for

continuous functions.

The algorithms cited below can be classified as ACO extensions for continuous func-

tions [24]. Socha and Dorigo [19] extended ACO so that it could also solve continuous

problems, with the name Extended ACO for continuous domains (ACOR). In this ap-

proach, each variable of an ant obtains its new value through a probabilistic sampling

of a probability density function (PDF). The most widely used PDF for this process is

Gaussian. Gaussian represents a model of distribution of pheromone in the environ-

ment, based on the population archive. The population file is initialized with the m

possible solutions, where m is a parameter that represents the number of solutions that

will be stored. With the representation adopted using the Gaussian function, the values

represented with the highest probability of sampling refer to the best solutions found.

The value of each variable in a new solution is calculated by sampling using two values:

the mean and the standard deviation. The value used as an average is chosen within

the population archive, and values that produced better results are more likely to be

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 3 of 40

selected. The standard deviation is calculated based on the distance between the value

used as an average and the other solutions in the population archive. When all ants re-

ceive their new values for their variables, the pheromone is updated. At each iteration,

the pheromone is updated through a process, in which the new solutions found by the

ants are added to the population archive, which will always remain with the m best

solutions.

There are other algorithms derived from ACOR for the optimization of problems with

continuous functions, such as Diversity ACOR (DACOR) [25]. DACOR is more appro-

priate for continuous optimization problems with a large number of dimensions, as it

tries to avoid loss of diversity in the first iterations. The objective is to preserve diver-

sity for as long as possible, to explore more regions of the search space, before the algo-

rithm converges. Another variation is the Incremental Ant Colony Algorithm with

Local Search (IACOR-LS) [26]. IACOR-LS is a variation of ACOR, which has a research

diversification strategy that results in an increase in the solutions archive. In addition, a

local search procedure is added to accelerate the process of finding the solution. The

Unified Ant Colony Optimization (UACOR) [27] includes components of the ACOR,

DACOR, and IACOR-LS algorithms, being able to instantiate each one, choosing spe-

cific components of the algorithm and allowing for the automatic adjustment of various

parameters. Adaptive Multimodal Continuous Ant Colony Optimization (AM-ACO) is

an extension of ACOR for multimodal optimization [28]. AM-ACO uses niching strat-

egies, dividing the total population into smaller parts rather than working with the total

population, and executing an adaptive adjustment of some parameters in this first stage.

Subsequently, a differential evolution mutation operator is used to accelerate the con-

vergence speed. Finally, a local search process is executed, based on the Gaussian distri-

bution. The Ant Colony Optimization Algorithm for Continuous Domains Based on

Position Distribution Model of Ant Colony Foraging [29] is based on the principle that

the ants’ food source is everywhere in the continuous space, and only the quality of the

food source is different. Each ant checks the quality of its position; checks the phero-

mone concentration in the rest of the space, using a group pheromone density func-

tion; and migrates to areas of higher concentration, where it is able to explore

unknown regions during this movement.

All the methods of optimization of continuous functions above belong to a category

called limited-range-search algorithms, that is, they find the ideal solution, but within

the predetermined domains [24]. The problem with these algorithms is that they are

dependent on the initial domain. If the initial domain is not estimated correctly and

does not have the optimal solution, the algorithm will not obtain the correct solution,

as ants cannot leave the domain. In real-world problems, where it is not always possible

to precisely define the search space, with its set of restrictions, these algorithms may

not solve the problem in the most appropriate manner. Chen et al. [24] propose a

broad-range search algorithm, which is able to find the optimal solution, even if the ini-

tial domains provided do not contain the optimal values. Robust Ant Colony

Optimization for continuous functions (RACO) uses the grid method to discretize con-

tinuous variables and applies self-adaptive strategies for domain adjustment, phero-

mone increment, domain division, and ant size, to enable the search to be successfully

executed. This method is used successfully in cases where the initial domain has the

optimal values for solving the problem, and in cases in which it does not.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 4 of 40

The objective of the proposed article is to contribute to the improvement of the re-

sults of the application of the ACO in problems of continuous optimization, through

the presentation of a new broad-range search algorithm, derived from RACO, called

the Accelerated and Robust Algorithm for Ant Colony Optimization in Continuous

Functions (ARACO). ARACO uses adaptive parameters related to domain adjustment.

The acceleration of these parameters, in opportune moments, leads the domain that

contains the optimal solution to be found more quickly, as well as allows, within the

correct domain, ants to converge to the optimal solution more quickly. In this case,

ARACO allows the optimal values for the variables to be found in a lower number of

function evaluations, when compared to the other algorithms.

With the acceleration of the adaptive domain adjustment parameters, it is possible that

the domain values have become stagnant in a region, which makes the best solution found

to be a local minimum. In this case, ARACO allows the domain of the variables to be

gradually increased around the best solution found so far, allowing the determination of a

new domain that is outside the region where the optimal location is found. In this case,

ARACO is able to reach regions of the domain that are not reached by its predecessor

RACO, thus allowing the optimal values to be achieved with a higher success rate.

This article is organized as follows. In the second section, the main features of

ARACO will be introduced and a step-by-step guide to the algorithm will be shown. In

the third section, ARACO’s experimental results will be presented. These results will be

compared with the results of other methods based on ant colony optimization in con-

tinuous functions and with methods that use other principles for optimization. Finally,

in the fourth section, conclusions about the research and future work that can be exe-

cuted will be presented.

ARACO
In order to present the proposed metaheuristic, this section will define the problem

that will be addressed by the article, in addition to the main features and steps taken by

ARACO in the search for the optimal solution.

Problem definition

The proposed algorithm aims at solving problems of continuous optimization, locating

the optimal solution, regardless of the domain provided. A continuous optimization

problem can be formally defined with the following model: P = (X, Ω, f) [24], where X

is a solution vector with n continuous variables xi (i = 1, 2, ..., n), Ω is a set of restric-

tions that must be met by the variables, and f is the objective function to be optimized.

In the case of a minimization problem, the objective is to find the value of X*, which

minimizes the function: f(X*) ≤ f(X), ∀X ∈ S. If this is a maximization problem, the ob-

jective is to find the value of X*, which maximizes the function: f(X*) ≥ f(X), ∀X ∈ S,

with S representing the initial domain from where the search for the value of X will be

carried out.

Discretization of variables

The ARACO algorithm uses the grid method for the discretization of variables.

Through it, the defined continuous domain is converted into a discrete domain. This

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 5 of 40

process happens at each iteration of the algorithm, as each iteration defines a new con-

tinuous domain for X. By definition, X is a vector of solutions with n dimensions with

continuous variables xi (i = 1, 2, ..., n).

In the adopted process, a continuous domain (ximin , ximax) will be determined for each

iteration, where ximin represents the lowest domain value for variable x, in dimension i,

while ximax represents the highest value of the domain for variable x, in dimension i.

The algorithm will seek the solution of the problem within this domain. A variable k is

used for discretization. The initial domain will be divided into k + 1 parts for each of

the n variables.

At this moment, the domain will be divided into k + 1 discrete values. The discrete

values of the domain can be represented by a matrix of n x (k + 1) dimensions, as

shown in Fig. 1, where n represents the number of variables in the problem. The Eq.

(1) is used to calculate the value of each element of the matrix.

hi ¼ ximax−x
i
min

� �
=k ð1Þ

where i represents each variable of the problem, varying between 1 and n.

Building a new solution

The main role of ants in ARACO is the construction of new solutions. Each ant will

store a possible solution, that is, a value for each variable of the optimization problem.

To build a new solution, the ants will initially take several random routes to distribute

the initial pheromone, which will be used as a basis to guide the construction of the so-

lutions together with the heuristic value of the function that will be optimized. In this

process, each ant randomly selects, for each variable, a value from the possible discrete

values that were obtained through the grid method. After this step, the random solu-

tions created will have their heuristic value calculated, according to the function that

will be minimized or maximized. The random routes created are ordered, according to

their heuristic value, and only the best solutions created will have their pheromone

distributed.

To distribute the pheromones, a matrix, called τ, will be used. This matrix has n x (k

+ 1) dimensions. The pheromone values of the best solutions are deposited in the τ

pheromone matrix, according to (2).

τij ¼ τij þ Q= f ð2Þ

where τij represents the pheromone value in variable i, at point j, mapped according

to the discretization of the variables; f represents the heuristic value of the solution;

Fig. 1 Domain discrete value matrix

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 6 of 40

and Q represents the adaptive pheromone increment, which will be described later, but

which is calculated by (3).

Q ¼ 10OMminþ1 ð3Þ

where OMmin represents the order of magnitude, that is, the exponent value of the

best solution found for the function.

When the pheromone of the best randomly generated solutions is deposited in the

matrix, ARACO will go to a new stage. From that moment, new ants will be generated

and they will choose their routes, using a probability calculation among the available

routes, represented by (4).

pij ¼ τij=
Xkþ1

i¼1
τij ð4Þ

where pij represents the probability that, in variable i, point j will be selected as the

route for the new ant. It is important to highlight that, based on the previous equations,

the probability of a value being selected as a solution for a new ant is calculated using

information related to the heuristic value and the amount of pheromone that the route

has, in the same way adopted in the basic concepts of ACO. Thus, solutions that have

a lower heuristic value and a higher amount of pheromone are more likely to be se-

lected as a route for new ants.

After the ants create all new routes, the pheromone evaporation process will occur.

This process prevents the pheromone from accumulating in only a few points, making

it difficult to diversify solutions. The new pheromone value at each point will be given

by (5).

τnewij ¼ 1−ρð Þ�τoldij ð5Þ

where ρ represents the evaporation rate and its value must be determined by a num-

ber between 0 and 1. In the ARACO algorithm, the recommended value for ρ is 0.5.

This value was determined empirically, that is, exhaustive tests were performed to de-

termine the value that produced the best results.

After evaporation, the best route among the created routes will have its pheromone

reinforced in the pheromone matrix. The process of building new solutions will be re-

peated, until the number of ants determined by variable m creates their routes, so that

the solutions are evaluated again and the pheromone of the best route is reinforced

again. The number of times this process is repeated is determined by the variable nc_

max.

Adaptive domain adjustment

The adaptive domain adjustment strategy allows the optimal solution to be found, even

if the initial assigned domain does not contain the optimal values. To this end, the do-

main must be adjusted automatically for each iteration. The domain adjustment

process is performed by analyzing the τ pheromone matrix. Each line i of the matrix τ

represents the pheromones distributed in a variable i, which has the values mapped in

the matrix in Fig. 1.

It can be said that if the pheromone is concentrated near the center of the domain,

there is a greater possibility that the ideal solution is located within the domain. On the

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 7 of 40

other hand, if the pheromone is concentrated near the ends of the domain, there is a

greater possibility that the ideal solution is located outside the domain. This analysis

and adjustment is executed variable by variable, since it is possible that for one variable

the solution is outside the domain and for another variable the solution is within the

domain.

To decide how the adjustment will be made, the algorithm uses the variable θ that

represents the percentage of (k+1) positions, which will determine if the best solution is

inside or outside the current domain. It also uses the variable ri, which represents

which position, between 0 and (k+1), has the highest concentration of pheromone.

Using these two variables, in an example where the variable θ has a value of 0.2, that is,

if ri is located in the first or last 20% of (k+1) positions, the ideal solution tends to be

located outside the domain. The recommended value for the variable θ is between 0.1

and 0.3. This range of values was defined in this way, as it is the range determined in

the RACO algorithm. The values of the parameters that exist in the two algorithms are

the same, in order to be able to better evaluate the new features implemented in

ARACO. Thus, if ri ≤ θ * (k+1) or ri ≥ (1 − θ) * (k+1), the adaptive adjustment of the

domain must be executed to move and expand the current domain, to find a domain

that includes the ideal solution.

In this case, the new values ximin and ximax of the variable i in the domain must be de-

termined considering ri as the center of the new domain, as in Eqs. (6–7).

ximin ¼ ri−
k
.
2
þ Δ1

� �
�hi ð6Þ

ximax ¼ ri þ k
.
2
þ Δ1

� �
�hi ð7Þ

where the parameter Δ1 must be small, in order that the new domain does not be-

come much bigger than the old domain. In the ARACO algorithm, the recommended

value is 1.25, but it is important to highlight that the value is changed dynamically to

speed up the solution conversion process, as shown in item 2.8 of the article. This ini-

tial value was defined in this way, as it is the value used in the RACO algorithm.

The inverse situation, when the ideal solution tends to be located within the current

domain, is represented when θ * (k+1) ≤ ri ≤ (1−θ) * (k+1). In this scenario, the current

domain must be reduced in order to execute a more detailed search.

In this case, the new values ximin and ximax of the variable i in the domain must be de-

termined following the Eqs. (8–9).

ximin ¼ ximin þ ximax−x
i
min

� ��Δ2 ð8Þ

ximax ¼ ximax− ximax−x
i
min

� ��Δ2 ð9Þ

where the parameter Δ2 determines the percentage of domain reduction, its value

should not be too large so that the domain is not reduced enough to produce a condi-

tion where the ideal solution is no longer within it. For each iteration that uses this ad-

justment, the new domain will be 2 * Δ2 smaller than the old domain. In the ARACO

algorithm, the recommended value is 0.05, but it is important to highlight that the

value is changed dynamically to speed up the solution conversion process, as shown in

item 2.8 of the article. This initial value was defined in this way, as it is the value used

in the RACO algorithm.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 8 of 40

There is another mechanism for speeding up the process in situations where the ideal

solution is outside the current domain. In this situation, case ri ≤ θ * (k+1), that is, the

domain displacement was executed in the direction of the value of ximin , the value of

ximin will be preserved and the value of ximax will be changed according to (10).

ximax ¼ ximax− ximax−x
i
min

� ��Δ3 ð10Þ

On the other hand, if ri ≥ (1-θ) * (k + 1), that is, the domain displacement was exe-

cuted in the direction of the value of ximax , the value of ximax will be preserved and the

value of ximin will be changed according to (11).

ximin ¼ ximin þ ximax−x
i
min

� ��Δ3 ð11Þ

where parameter Δ3 determines the percentage that the domain will be reduced, at

its lower or upper limit, depending on the value ri. In the ARACO algorithm, the rec-

ommended value is 2 * Δ2, that is, 0.1, but it is important to highlight that the value is

changed dynamically to speed up the solution conversion process, as shown in item 2.8

of the article. This initial value was defined in this way, as it is the value used in the

RACO algorithm.

Adaptive pheronome increment

To calculate the values of the τ pheromone matrix, the heuristic value of the solution

(f) and the value of the variable Q are used. The value of the variable Q cannot remain

constant throughout the execution of the algorithm, because as the algorithm interac-

tions are executed, the value of f is changed, since better solutions are found and the

domain is changed. With the value of f being altered at each iteration and, as τij = Q /

f, the values of Q and f could become very disproportionate, causing the pheromone

matrix to possess similar values, making it impossible for the algorithm to converge. It

is important to note that the problem of the pheromone matrix having only similar

values could not be avoided if was set for Q a very low value or very high, as in any

case, the variation in the value of f would cause the values to become similar at some

moment.

The solution found was to define the pheromone increment of the τij matrix through

an adaptive strategy, making the variable Q as different as possible at each iteration, as

the domain is changed. This value must always be proportional to the heuristic value of

the best randomly generated solution, at the beginning of each iteration, therefore Q

¼ 10OMminþ1 . The creation of random routes at the beginning of each iteration allows

for an initial pheromone to exist before ants build their routes. This initial pheromone

will cause the routes to be determined by the ants in a non-random manner, as they

will be directed by the initial pheromone, causing the convergence of the algorithm to

be increased.

Adaptive domain division

One of the main characteristics of ARACO is to be able to find the best solution, even

if it is not contained in the initial domain provided. This is only possible because an ad-

justment is made in the domain at each iteration, using among other parameters the

variable k, which also directly influences the domain discretization process. At each

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 9 of 40

iteration, the domain is changed and discretized. If the value of k is very low over the

entire algorithm, the domain will be converted into a few discrete points, which may

not be able to direct the ants to the ideal solution of the problem, as it is not close to

an optimal region. On the other hand, if the value of k is very high over the whole algo-

rithm, the domain will be converted into many discrete points, which may have similar

heuristic values, making it slow to find the most promising region among those

available.

The fact is that the degree of precision of the domain discretization depends on the

variable k, which will have its value defined through an adaptive method in ARACO. At

the beginning of the execution, k may have a lower value, so that the algorithm can

quickly converge to a promising area. However, at some point, the value of k will limit

the algorithm, causing it not to find better solutions with each iteration. The value of k

must then be increased by one, so that the accuracy of the search is increased and the

algorithm can find solutions that were not possible with the previous value of k. The

recommended initial value for variable k is 11. This initial value was defined in this

way, as it is the value used in the RACO algorithm.

Adaptive number of ants

Another condition that influences the success of the algorithm is the number of ants

that will execute the search at each iteration. The number of ants depends directly on

the discretization process of the domain, because if the continuous domain is converted

into a few points, few ants will be able to find the most promising region to search.

However, if the domain is converted at many points, many ants will be needed to find

the best solutions.

Thus, the number of ants used must also be an adaptive parameter, because when

the domain is converted into a few points, that is, k has a low value, the m number of

ants is also low. As the value of k increases, due to the need for greater precision in the

search for the best solutions, the number of ants should also increase. The Eq. (12) de-

termines the number of ants.

m ¼ k þ Δm ð12Þ

where the parameter Δm represents how much m must be greater than k, to enable

ants to find the best solutions, without spending a lot of time searching. The recom-

mended value for Δm is 2. This initial value was defined in this way, as it is the value

used in the RACO algorithm.

Acceleration of adaptive domain adjustment parameters

In order to speed up the convergence process of the ARACO algorithm for the best so-

lution, adaptive values are used for the parameters Δ1, Δ2, and Δ3, responsible for

adjusting the domain at each iteration. The parameters are adjusted under certain situ-

ations to accelerate the algorithm, but then return to their initial values when this ac-

celeration is no longer recommended.

If the optimal solution is located near to the center of the current domain, it is neces-

sary that the domain be reduced, using (8–9), so that a more detailed search is exe-

cuted. The parameter responsible for determining how much the domain will be

reduced is Δ2 and its initial value is 0.05. ARACO verifies whether the point with the

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 10 of 40

highest concentration of pheromones is located in the central position of the current

domain or in the position before or after the center, in other words, whether ri = (k+1)

/ 2 or ri = ((k+1) / 2) - 1 or ri = ((k+1) / 2) + 1. In these cases, parameter Δ2 will in-

crease by 0.05, as the ideal solution tends to be located near to the center of the do-

main; thus, it is possible to ignore some values located at the edges of the domain,

while reducing the domain at a faster speed, so that ants can find the best solution in

less iterations. In other cases, where the ideal solution tends to be within the domain,

but not near to the center, parameter Δ2 will increase by 0.005. The acceleration of par-

ameter Δ2 has a limit and this must be executed until it reaches a maximum value of

0.15. Noteworthy here is that, when the point with the highest concentration of phero-

mones is not located within the domain, Δ2 returns to its initial value.

If the ideal solution is located outside the current domain, it is necessary that the do-

main be moved and expanded, using (6–7), so that the correct domain is found. The

parameter responsible for determining how much the domain will be displaced and ex-

panded is Δ1, where its initial value is 1.25. ARACO verifies whether the point with the

highest concentration of pheromones is located on the lower or upper edge of the do-

main, in other words, whether ri = 1 or ri = (k + 1). In these cases, the parameter Δ1

will be increased by 0.25, because as the ideal solution tends to be far from the edge of

the domain, a more significant displacement and increase can be performed, so that the

correct domain can be located more quickly. In other cases, where the ideal solution

tends to be outside the domain, but not so far from the edge, parameter Δ1 will in-

crease by 0.025. The acceleration of parameter Δ1 has a limit and must be executed

until it reaches a maximum value of 1.75. Emphasis is here placed on the fact that

when the point with the highest concentration of pheromones is no longer located out-

side the domain, Δ1 returns to its initial value.

These increment values for the variables Δ1 and Δ2 were determined empirically, that

is, exhaustive tests were performed to determine the values that produced the best

results.

The parameter Δ3 is also dynamically adjusted, but its variation depends directly on

the adjustment of Δ2, as previously stated Δ3 = 2 * Δ2.

Expansion of the domain around the best solution

In some cases, the acceleration of the parameters Δ1, Δ2, and Δ3 can cause the algo-

rithm to converge to a region with a local minimum and cannot get out. For such a

situation of stagnation of the algorithm, ARACO has a domain adjustment strategy,

which causes a new domain to be defined around the best solution found so far. This

adjustment is executed when there are 30 iterations of the algorithm without an im-

provement of at least 10% in the heuristic value of the best solution found. A new do-

main will be determined for only one of the variables, so that this expansion can

happen gradually. The choice of the variable that will have its domain changed is de-

fined through a test, which locates the variable that would proportionally have less vari-

ation with the extension of the domain. This variable tends to be more stagnant than

the others. The Eqs. (13–14) determine the value of the new domain.

ximin ¼ besti−k
.
2
�Δ1�Hi�ei ð13Þ

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 11 of 40

ximax ¼ besti þ k
.
2
�Δ1�Hi�ei ð14Þ

where besti represents the value of the best solution found so far, Hi represents the

value of hi when the best solution was found and the parameter ei represents to which

degree the new domain needs to expand in order to leave the local minimum region.

The parameter ei, for each variable i, is initialized with 1. Whenever 30 iterations are

performed and the best solution remains stagnant, it will have its value doubled to the

variable that had its domain changed. When the best solution leaves the local minimum

region, that is, when a new solution is found that is at least 10% better than the best so-

lution found, the parameter returns to 1, for all variables i. In this case, there is the

guarantee that the new domain generated will gradually increase around the best solu-

tion found, allowing new values to be located outside regions of local minimum.

The value of the parameters responsible for detecting and treating stagnation were

determined empirically, that is, exhaustive tests were carried out to determine the

values that produced the best results.

As previously mentioned, the Hi parameter represents the value of hi when the best

solution was found. However, for the new domain not to become so small that it is ne-

cessary to execute this extension several times, which would impair the performance of

the algorithm, or so large that it is not possible to find a best solution in just 30 itera-

tions, the value of the Hi parameter must be within the range 0.1 ≤ Hi ≤ 1. Also noted

here is that, after the domain expansion process around the best solution found, it is

necessary to reset Δ1, Δ2 and Δ3, to the initial values.

The steps of the ARACO algorithm

After detailing the main features of ARACO, this topic presents the structure of the al-

gorithm. First, a step-by-step will be shown, describing in detail all the actions per-

formed by the algorithm, from the assignment of the initial parameters, until the

completion of the algorithm, when the termination condition is reached. Following this,

a flowchart is presented that represents the sequence and the interaction between the

actions of the algorithm.

Step by step

In this section, the main steps followed by the algorithm to find the optimal solution

are shown and explicated. One of the main improvements generated by the ARACO al-

gorithm is related to obtaining a better performance, with the execution of step 17.

Through this step, the algorithm is able to find the optimal value in a smaller number

of iterations compared to other algorithms, thanks to the acceleration of the respon-

sible parameters by adjusting the domain at appropriate times. Another improvement

is related to achieving greater reliability, with the execution of step 18. Through this

step, the algorithm is able to find the optimal value in practically all the performed exe-

cutions, by applying the process that treats algorithm stagnation. This process expands

the domain around the best solution found so far, through preventing the algorithm

from getting stuck in a region of local minimum. This occurs regardless of whether the

initial domain provided contains or not the optimal solution, allowing the algorithm to

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 12 of 40

find the solution using fewer function evaluations than the other algorithms cited in

the article, as will be shown in item 3. All steps for the algorithm are listed below:

Step 1—Initialize the values of all variables, such as k, θ, ρ, nc_max, Δm, Δ1, Δ2, Δ3,

FMIN, t, and the number of iterations without improvement. In addition to the value of

ximin and ximax; which represent the initial domain for each variable, i.e., the minimum

and maximum value of the dimensions of the domain and the termination condition

of the algorithm.

Step 2—Divide the initial domain into k equal points for each variable, according to

(1). At that moment, the process of discretization over the variables occurs using the

grid method, in which the continuous domain provided is converted into a discrete

domain. This process is important because the rest of the algorithm will work with the

discretized domain. The result is shown in Fig. 1.

Step 3—Initialize the τ pheromone matrix, which represents the amount of

pheromone stored at each point in the domain discrete value matrix. In addition,

initialize the adaptive number of ants m, which has a dynamic value, due to the fact

that when the domain is divided into a few discrete points, the small number of ants

are sufficient to perform the search. However, when the domain is divided into many

discrete points, will be necessary too many ants to perform the search. Similarly,

initialize the variable fmin, which stores the heuristic value of the best solution found in

the current iteration, and the variable nc, which controls the number of times that

ants will generate new routes in each iteration.

Step 4—Generate some possible random solutions.

Step 5—Calculate the heuristic value of the random solutions created, according to the

function that will be minimized or maximized by the algorithm. Sort the solutions

according to the heuristic value.

Step 6—Calculate the value of the adaptive increment Q of the pheromone in this

iteration, according to (3), so that the value of Q remains proportional to the heuristic

value of the solutions found in the current solution, thus maintaining a proportional

pheromone distribution in the τ pheromone matrix. Distribute the initial pheromone

over the best solutions created, to supply the τ pheromone matrix with some initial

information, and as such guide the first ants towards more attractive solutions, thus

accelerating the algorithm conversion process.

Step 7—Create new routes for ants using the roulette wheel method by use of (4).

Each ant creates its new route, variable by variable, performing a probabilistic

calculation, which considers the pheromone existing at each point in the pheromone

matrix. As the calculation of the amount of pheromone uses the heuristic value of the

solutions, it can be said that the same criteria defined in the initial concept of ACO

are used.

Step 8—Evaluate the solutions generated in this nc iteration, according to the function

that will be minimized or maximized by the algorithm. The objective of this step is to

find and store the best solution, among the solutions created in this iteration.

Step 9—Execute the pheromone evaporation process, according to (5). This process

ensures that paths that have less pheromone become less and less attractive, until they

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 13 of 40

are no longer covered. While the paths that have more pheromone are able to guide

ants in the search for better solutions.

Step 10—Increase the pheromone at all points of the best solution found in this

iteration, using (2), so that the pheromone matrix always has a greater amount of

pheromone on the paths that are more attractive.

Step 11—Update the value of fmin to the value of the best solution found in the nc

current route, if this value is less than fmin, the fmin must store the heuristic value of

the best solution found in the current iteration.

Step 12—Increase the value of nc. If nc <= nc_max, go back to step 7, as the number

of routes necessary for the domain adjustment was not generated. Otherwise, this is, if

nc > nc_max, proceed to step 13.

Step 13—Check if the best solution found in this iteration (fmin) is the best global

solution found (FMIN). If so, go to step 14. Otherwise, jump to step 15.

Step 14—Store the value of the new global best solution in the variable FMIN and

verify if the new solution is 10% better than the previous one to define if the algorithm

is stagnant and reset the Hi value. Knowledge of when the algorithm is stagnant is

important, as it allows for the subsequent execution of a strategy to deal with this state

of stagnation, allowing the algorithm to leave the local minimum region and continue

on to find better solutions. To this end, it is necessary to store the value of Hi, at the

moment when a new value of FMIN is found.

Step 15—Increase the variable that controls the amount of iterations without

improvement to detect the stagnation of the algorithm and also the variable t. The

variable t will increment k, responsible for the adaptive domain division, when the

value of t is 15. The variable k is an adaptive parameter, which needs to have a small

initial value, so that the algorithm can locate a promising region, but its value is

gradually increased to enable new searches to be carried out with a greater degree of

precision, when better results are not attained.

Step 16—Perform the adaptive domain adjustment process, based on the position of

the τ pheromone matrix which has a higher concentration of pheromones. For this, if

the pheromone is concentrated near the edge of the domain, the best solution found

in this iteration tends to be located outside the domain. In this case, to locate a

domain that contains the optimal solution, it is necessary to expand and adjust the

domain using (6–7, 10–11). On the other hand, if the pheromone is concentrated

away from the domain edge, the best solution found in this iteration tends to be

within the domain. In this case, it will be necessary to reduce the domain using (8–9)

to perform the search in the next iteration with a greater degree of precision.

Step 17—Increase the speed of convergence of the algorithm, accelerating the adaptive

domain adjustment parameters, if appropriate. In other words, accelerate the value of

Δ1 when the pheromone is concentrated around the central positions of the domain

and, accelerate the value of Δ2 when the pheromone is concentrated at the upper or

lower edge of the domain. When these opportune situations cease to exist, parameters

Δ1 and Δ2 return to their initial values.

Step 18—Increase the success rate of the algorithm, i.e., the number of executions in

which the algorithm can find the optimum value, through the process of treating the

algorithm stagnation. That is, if the algorithm is stagnant, redefine the domain and

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 14 of 40

gradually expand it around the best solution found so far, using (13–14), allowing the

algorithm to escape from a local minimum region.

Step 19—Check if the termination condition has been reached. If so, go to step 20.

Otherwise, go back to step 2.

Step 20—Finalize the algorithm.

Flowchart

Figure 2 describes the entire process performed during the ARACO algorithm. It is im-

portant to highlight that each action performed in the flowchart below is identified with

a number, which is the step number of the section Step by step to which it

corresponds.

Experimental results
In this section, the efficiency of ARACO will be verified, by performing tests in the

same scenarios as the tests performed by the RACO algorithm, since ARACO is pro-

posed as an algorithm derived from RACO. ARACO will be compared to RACO

throughout this section. At first, the tests were performed in a scenario where the prob-

lem is solved by a limited-range-search algorithm, i.e., the initial domain provided con-

tains the ideal solution for the function. Tests were also performed in a scenario where

the problem is solved by a broad-range search algorithm, i.e., the initial domain pro-

vided does not contain the ideal solution. After these initial tests, new tests were per-

formed using the benchmark functions used in the IEEE Congress of Evolutionary

Computation Benchmark Test Functions (CEC 2019 100-Digit Challenge). In both sce-

narios tested, the values of the main ARACO parameters are k = 11, θ = 0.2, ρ = 0.5,

nc_max = 50, Δm = 2, Δ1 = 1.25, Δ2 = 0.05, Δ3 = 0.1. The parameter values were defined

in this way, as these are the values used in the RACO algorithm, and since the ARACO

algorithm was compared in all scenarios with the RACO algorithm, it is necessary that

the initial parameters of the two have the same values, so that the comparison is fairer.

Noted here is that the values of k, Δ1, Δ2 e Δ3 are changed during the execution of the

algorithm, so the assigned values are only the initial values. Another parameter of inter-

est here is that 100 random routes are generated at each beginning of the algorithm it-

eration and the 30 routes that generate the lowest heuristic value for the function that

will be optimized will deposit their pheromone in the τ matrix. This provides the algo-

rithm with the initial information needed to find solutions. Another important factor is

that the algorithm is considered stagnant, and therefore, the domain adjustment strat-

egy is executed around the best solution found, when 30 iterations are executed with-

out finding a solution that has a heuristic value, which is at least 10% less than the

heuristic value of the best solution found so far. The value of the parameters respon-

sible for detecting and treating stagnation were determined empirically, that is, exhaust-

ive tests were carried out to determine the values that produced the best results.

All comparisons between the algorithms are based on the number of function evalua-

tions performed until the termination condition is reached. Noteworthy here is this was

the criterion chosen, due to the other algorithms cited in the article also using this cri-

terion. Thus, it becomes possible to compare ARACO to these, as they use the same

termination condition. ARACO considers a function evaluation when the process of

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 15 of 40

Fig. 2 ARACO’s flowchart

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 16 of 40

adaptive adjustment of the domain is carried out, which refers to step 16 of the flow-

chart presented in the section “Step by step”.

In all tests performed, the programming language used was MATLAB, in version

R2016A. The equipment used for the tests was a notebook, with an AMD A10-4600M

Quad-core processor with a clock speed of 2.3GHz, and 8GB of DDR3L RAM, with the

Windows 10 - 64-bit operating system.

Tests where the initial domain contains the optimal solution

The results obtained in the ARACO algorithm were compared with the results found

in the ACOR algorithm [19] and with the methods it cites, in addition to the results

found by the RACO algorithm [24], which was the reference used for the creation of

ARACO.

As in Socha and Dorigo [19], the comparisons are divided into three groups:

probability-learning methods that model and sample probability distributions, meta-

heuristics developed for combinatorial optimization and adapted to continuous do-

mains, and methods inspired on the behavior of ants. In the three groups of

comparisons, the comparison with ACOR and RACO will be added.

For an impartial comparison between the algorithms, the established criterion was

the number of function evaluations performed, instead of the execution time or other

measures that may be related to the performance of the equipment or the program-

ming language used.

Probability-learning methods that model and sample probability distributions

The methods for comparison in this section are three versions of evolutionary strat-

egies: (1+1) ES (Evolution Strategy with 1/5th-Success-Rule), CSA-ES (Evolution Strat-

egy with Cumulative Step Size Adaptation), CMA-ES (Evolution Strategy with

Covariance Matrix Adaptation), IDEA (Iterated Density Estimation Evolutionary Algo-

rithm), and MBOA (Mixed Bayesian Optimization Algorithm). The population size

used in the above algorithms is chosen for each algorithm-problem pair [30]. The smal-

lest population is selected from the set p ∈ [10, 20, 50, 100, 200, 400, 800, 1600, 3200].

ACOR parameters are m (number of ants) = 2, n (speed of convergence) = 0.85, q (lo-

cality of the search process) = 10−4, and k (archive size) = 50. The RACO parameters

are the same as ARACO.

Each benchmark function was run 20 times and the comparison criterion used in this

section is the median number of function evaluations (MNFE) executed until the ter-

mination condition was reached. The Eq. (15) determines the termination condition.

f - f �j j < ∈ ð15Þ

where f is the best heuristic value found by ARACO, f* is the optimal value found in

the literature for the benchmark function, and ∈ is 10−10.

Table 1 shows the benchmark functions used in this scenario. All have 10 dimen-

sions. The Function column shows the name of the benchmark function. The Formula

column shows the formula used to calculate the value of the function that will be mini-

mized or maximized. The Optimal column shows the ideal value for each variable of

the function. The Minimum column shows the minimum value of the function, when

the optimal values for each of the variables are found

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 17 of 40

The results used to compare ACOR, (1 + 1) ES, CSA-ES, CMA-ES, IDEA, and MBOA

were obtained from Dorigo et al. [19], whereas the results used for comparison with

RACO were obtained from Chen et al. [24]. Table 2 shows the median number of func-

tion evaluations (MNFE) necessary for each method to find the termination condition.

The median is shown in parentheses, after 1.0, only for the algorithm that has the best

result for a function, the other medians can be calculated proportionally based on the

value shown in the table. For example, if an algorithm has its median shown with 1.0

(86), it means that it is the algorithm that has the best median and the value of this me-

dian is 86. On the other hand, if an algorithm that does not have the best result, its me-

dian is shown in the table as 1.8, that is to say that the median is 1.8 multiplied by the

best result found for that function. Some methods failed to find the optimal value in all

runs for the Rosenbrock function. These cases were represented in the table with an *.

Worthy of mention here is that in four out of the five functions, ARACO is able to

optimize the functions with less than half the number of function evaluations of the

second best algorithm. If the performance is compared with the other algorithms, the

difference becomes even more impressive, being more than 90% higher. The superiority

of ARACO in this scenario was obtained thanks to the acceleration of the adaptive do-

main adjustment parameters Δ1, Δ2, and Δ3, at opportune moments, since the tests

showed that there was no stagnation of the algorithm. With the acceleration of these

parameters, it is possible to reach a small domain faster, which guarantees not only

finding the optimal solution, but also a greater precision compared to RACO.

Figure 3 shows a comparison between the two algorithms that have the best results,

in relation to MNFE, for the benchmark functions in Table 2.

Table 1 First part of benchmark functions

Function Formula Optimal x* Minimum f(x*)

Sphere
f ð x!Þ ¼

Xn
i¼1

xi
2 x�

! ¼ ð0;…; 0Þ fmin = 0

Ellipsoid
f ð x!Þ ¼

Xn
i¼1

ð100 i−1
n−1xiÞ

2 x�
! ¼ ð0;…; 0Þ fmin = 0

Cigar
f ð x!Þ ¼ x1

2 þ 104
Xn
i¼2

xi
2 x�

! ¼ ð0;…; 0Þ fmin = 0

Tablet
f ð x!Þ ¼ 104x1

2 þ
Xn
i¼2

xi
2 x�

! ¼ ð0;…; 0Þ fmin = 0

Rosenbrock
f ð x!Þ ¼

Xn−1
i¼1

½100ðxi2−xiþ1Þ2 þ ðxi−1Þ2� x�
! ¼ ð1;…; 1Þ fmin = 0

Table 2 Comparison of results of ARACO, RACO, ACOR, and probability-learning methods that
model and sample probability distributions

Function ARACO RACO ACOR (1+1) ES CSA-ES CMA-ES IDEA MBOA

Sphere x!:[−3,7]n, n = 10 1.0 (86) 2.23 17.52 15.93 25.48 20.70 79.65 764.65

Ellipsoid x!:[−3,7]n, n = 10 1.0 (103) 2.11 112.33 2851.45 4752.42 43.20 69.12 604.85

Cigar x!:[−3,7]n, n = 10 1.0 (114.5) 2.05 46.95 20457.64 26829.69 33.53 154.27 402.44

Tablet x!:[−3,7]n, n = 10 1.0 (89) 2.28 28.84 1326.76 1874.77 49.03 83.64 692.22

Rosenbrock x!:[−5,5]n, n = 10 *1.0 (997) 1.25 *7.93 *367.79 1298.09 7.21 *1514.44 *7932.79

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 18 of 40

Metaheuristics developed for combinatorial optimization and adapted to continuous

domains

The metaheuristics used for comparison in this scenario is CGA (Continuous Genetic

Algorithm), ECTS (Enhanced Continuous Tabu Search), ESA (Enhanced Simulated An-

nealing), and DE (Differential Evolution). The parameters for the aforementioned algo-

rithms are essentially chosen through a trial-and-error procedure [19]. The results used

for comparison of ACOR, CGA, ECTS, ESA, and DE were obtained from Dorigo et al.

[19], whereas the results used to compare RACO were obtained from Chen et al. [24].

The benchmark functions used in this scenario are shown in Table 3 below, except

for the Rosenbrock function, previously shown in Table 1. The Function column shows

the name of the benchmark function. The Formula column shows the formula used to

calculate the value of the function that will be minimized or maximized. The Optimal

column shows the ideal value for each variable of the function. The Minimum column

shows the minimum value of the function, when the optimal values for each of the var-

iables are found. The ARACO algorithm was run 100 times for each benchmark func-

tion and the comparison criteria used in this section are the average number of

function evaluations (ANFE) executed until the termination condition was reached, in

addition to the success rate. The Eq. (16) determines the termination condition.

f - f �j j < ∈1� f � þ ∈2 ð16Þ

where f is the best heuristic value found by ARACO, f* is the optimal value found in

the literature for the benchmark function, and ∈1 = ∈2 = 10-4.

Table 4 shows the average number of function evaluations (ANFE) necessary for each

method to find the termination condition. The average is shown in parentheses only

for the algorithm that has the best result for a function; the other averages can be cal-

culated proportionally based on the value shown in the table. When there is no value

shown on the table for a determined algorithm, it means that the result for that bench-

mark function was not available. In relation to ANFE, ARACO obtains better results in

Fig. 3 Comparison of results of ARACO and RACO

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 19 of 40

Ta
b
le

3
Se
co
nd

pa
rt
of

be
nc
hm

ar
k
fu
nc
tio

ns

Fu
nc

ti
on

Fo
rm

ul
a

O
p
ti
m
al

x*
M
in
im

um
f(
x*
)

Br
an
in

RC
O
S

fð
x!
Þ¼

ðx 2
−
5x

1
2

4π
2
þ
5x

1 π
−
6Þ

2

þ
10
ð1
−

1 8π
Þc

os
ðx 1

Þþ
10

3
op

tim
um

s
f m

in
=
0.
39
78
87

B2
fð

x!
Þ¼

x 1
2
þ
2x

2
2
−
0:
3
co
sð3

πx
1
Þ−
0:
4
co
sð4

πx
2
Þþ

0:
7

x�!
¼

ð0;
0Þ

f m
in
=
0

Ea
so
m

fð
x!
Þ¼

−
co
sðx

1
Þc

os
ðx 2

Þe
xp
ð−
ððx

1
−
πÞ

2
þ
ðx 2

−
πÞ

2 ÞÞ
x�!

¼
ðπ
;π
Þ

f m
in
=
−
1

G
ol
ds
te
in

an
d
Pr
ic
e

fð
x!
Þ¼

½1
þ
ðx 1

þ
x 2

þ
1Þ

2
ð19

−
14
x 1

þ
3x

1
2
−
14
x 2

þ
6x

1
x 2
Þ�½
30

þ
ð2
x 1
−
3x

2
Þ2 ð

18
−
32
x 1

þ
12
x 1

2
þ
48
x 2
−
36
x 1
x 2

þ
27
x 2

2
Þ�

x�!
¼

ð0;
−
1Þ

f m
in
=
3

Za
kh
ar
ov

fð
x!
Þ¼

Xn i¼
1

x i
2
þ
ðXn i¼

1

0:
5i
x i
Þ2

þ
ðXn i¼

1

0:
5i
x i
Þ4

x�!
¼

ð0;
…
;0
Þ

f m
in
=
0

D
e
Jo
ng

fð
x!
Þ¼

x 1
2
þ
x 2

2
+
x 3

2
x�!

¼
ð0;

0;
0Þ

f m
in
=
0

H
ar
tm

an
n
(H

3,
4)

fð
x!
Þ¼

−
X4 i¼

1

c i
ex
pð
−
X3 j¼

1

a i
jðx

j−
p i
jÞ2
Þ

a i
j
¼

3:
0

10
:0

30
:0

0:
1

10
:0

35
:0

3:
0

10
:0

30
:0

0:
1

10
:0

35
:0

� � � � � � � �

� � � � � � � �
c i
¼

1:
0

1:
2

3:
0

3:
2� � � � � � � �

� � � � � � � �
p i
j
¼

0:
36
89

0:
11
70

0:
26
73

0:
46
99

0:
43
87

0:
74
70

0:
10
91

0:
87
32

0:
55
47

0:
03
82

0:
57
43

0:
88
28

� � � � � � � �

� � � � � � � �

x 1
∗
=
0.
11
4

x 2
∗
=
0.
55
5

x 3
∗
=
0.
85
5

f m
in
=
−
3.
86
28

Sh
ek
el
(S
4,
k,
k
=
5,
7,
10
)

fð
x!
Þ¼

−
Xk i¼

1

ðX4 j¼
1

ðx
j−
a j
iÞ2

þ
c i
Þ−

1
x 1

∗
=
4

x 2
∗
=
4

x 3
∗
=
4

x 4
∗
=
4

fk
¼5 m
in
¼

−
10
:1
53
2

fk
¼7 m
in
¼

−
10
:4
02
9

fk
¼1

0
m
in

¼
−
10
:5
36
4

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 20 of 40

Ta
b
le

3
Se
co
nd

pa
rt
of

be
nc
hm

ar
k
fu
nc
tio

ns
(C
on

tin
ue
d)

Fu
nc

ti
on

Fo
rm

ul
a

O
p
ti
m
al

x*
M
in
im

um
f(
x*
)

a i
j
¼

4:
0

4:
0

4:
0

4:
0

1:
0

1:
0

1:
0

1:
0

8:
0

8:
0

8:
0

8:
0

6:
0

6:
0

6:
0

6:
0

3:
0

7:
0

3:
0

7:
0

2:
0

9:
0

2:
0

9:
0

5:
0

3:
0

5:
0

3:
0

8:
0

1:
0

8:
0

1:
0

6:
0

2:
0

6:
0

2:
0

7:
0

3:
6

7:
0

3:
6

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

c i
¼

0:
1

0:
2

0:
2

0:
4

0:
4

0:
6

0:
3

0:
7

0:
5

0:
5� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
H
ar
tm

an
n
(H

6,
4)

fð
x!
Þ¼

−
X4 i¼

1

c i
ex
pð
−
X3 j¼

1

a i
jðx

j−
p i
jÞ2
Þ

a i
j
¼

10
:0

3:
00

17
:0

3:
50

1:
70

8:
00

0:
05

10
:0

17
:0

0:
10

8:
00

14
:0

3:
00

3:
50

1:
70

10
:0

17
:0

8:
00

17
:0

8:
00

0:
05

10
:0

0:
10

14
:0

� � � � � � � �

� � � � � � � �
c i
¼

1:
0

1:
2

3:
0

3:
2� � � � � � � �

� � � � � � � �

x 1
∗
=
0.
20
1

x 2
∗
=
0.
15
0

x 3
∗
=
0.
47
7

x 4
∗
=
0.
27
5

x 5
∗
=
0.
31
1

x 6
∗
=
0.
65
7

f m
in
=
−
3.
32
23

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 21 of 40

Ta
b
le

3
Se
co
nd

pa
rt
of

be
nc
hm

ar
k
fu
nc
tio

ns
(C
on

tin
ue
d)

Fu
nc

ti
on

Fo
rm

ul
a

O
p
ti
m
al

x*
M
in
im

um
f(
x*
)

p i
j
¼

0:
13
12

0:
16
96

0:
55
69

0:
01
24

0:
82
83

0:
58
86

0:
23
29

0:
41
35

0:
83
07

0:
37
36

0:
10
04

0:
99
91

0:
23
48

0:
14
51

0:
35
22

0:
28
83

0:
30
47

0:
66
50

0:
40
47

0:
88
28

0:
87
32

0:
57
43

0:
10
91

0:
03
81

� � � � � � � �

� � � � � � � �
G
rie
w
an
gk

fð
x!
Þ¼

Xn i¼
1

x i
2

40
00

−
Yn i¼

1

co
sð
x i
ffiffi ip
Þþ

1
x�!

¼
ð0;

…
;0
Þ

f m
in
=
0

M
ar
tin

&
G
ad
dy

fð
x!
Þ¼

ðx 1
−
x 2
Þ2
þ
ðx 1

þ
x 2
−
10

3
Þ2

x�!
¼

ð5;
5Þ

f m
in
=
0

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 22 of 40

Ta
b
le

4
C
om

pa
ris
on

of
re
su
lts

of
A
RA

C
O
,R
A
C
O
,A

C
O
R
,a
nd

m
et
ah
eu
ris
tic
s
de

ve
lo
pe

d
fo
r
co
m
bi
na
to
ria
lo

pt
im

iz
at
io
n
an
d
ad
ap
te
d
to

co
nt
in
uo

us
do

m
ai
ns

Fu
nc

ti
on

A
RA

C
O

RA
C
O

A
C
O
R

C
G
A

EC
TS

ES
A

D
E

Br
an
in

RC
O
S

x!
:[−

5,
15
]n
,n

=
2

1.
0
(1
7.
8)

4.
48

48
.1
7

34
.4
1

13
.7
6

-
-

B 2
x!
:[−

10
0,
10
0]
n
,n

=
2

1.
0
(1
9.
8)

4.
09

28
.2
3

21
.7
1

-
-

-

Ea
so
m

x!
:[−

10
0,
10
0]
n
,n

=
2

1.
0
[9
6%

](
49
.7
)

1.
11

[7
0%

]
15
.5
3
[9
8%

]
29
.5
1

-
-

-

G
ol
ds
te
in

an
d
Pr
ic
e

x!
:[−

2,
2]
n
,n

=
2

1.
0
(1
7)

2.
88

23
.1

24
.4
5

13
.5
8

46
.2

-

Ro
se
nb

ro
ck

(R
2)

x!
:[−

5,
10
]n
,n

=
2

1.
0
(7
4.
8)

1.
05

10
.9

12
.8
3

6.
41

10
.9

8.
34

Za
kh
ar
ov

(Z
2)

x!
:[−

5,
10
]n
,n

=
2

1.
0
(1
5.
5)

1.
29

18
.8
7

40
.2
5

12
.5
8

10
19

-

D
e
Jo
ng

x!
:[−

5.
12
,5
.1
2]
n
,n

=
3

1.
0
(1
1)

3.
81

35
.6
3

67
.7
0

-
-

35
.6
3

H
ar
tm

an
n
(H

3,
4)

x!
:[0
,1
]n
,n

=
3

1.
0
(1
0.
8)

2.
48

31
.6
6

53
.8
3

50
.6
6

63
.3
3

-

Sh
ek
el
(S
4,
5)

x!
:[0
,1
0]
n
,n

=
4

6.
06

[8
7%

]
1.
0
[5
6%

](
47
.9
)

16
.5
5
[5
7%

]
12
.7
3
[7
6%

]
17
.8
2
[7
5%

]
24
.1
9
[5
4%

]
-

Sh
ek
el
(S
4,
7)

x!
:[0
,1
0]
n
,n

=
4

3.
32

1.
0
[9
2%

](
48
.9
)

15
.2
9
[7
9%

]
13
.9
[8
3%

]
18
.0
7
[8
0%

]
25
.0
3
[5
4%

]
-

Sh
ek
el
(S
4,
10
)
x!
:[0
,1
0]
n
,n

=
4

2.
97

1.
0
[9
7%

](
49
.6
)

14
.4
1
[8
1%

]
13
.1
[8
3%

]
18
.3
4
[8
0%

]
23
.5
8
[5
0%

]
-

Ro
se
nb

ro
ck

(R
5)

x!
:[−

5,
10
]n
,n

=
5

2.
01

1.
0
(1
84
.3
)

13
.9
4
[9
7%

]
22
.0
8

11
.6
2

29
.0
5

-

Za
kh
ar
ov

(Z
5)

x!
:[−

5,
10
]n
,n

=
5

1.
0
(3
6.
3)

1.
7

20
.0
2

38
.0
5

62
.0
8

19
22
.6
4

-

H
ar
tm

an
n
(H

6,
4)

x!
:[0
,1
]n
,n

=
6

3.
31

[9
7%

]
1.
0
[5
0%

](
28
.6
)

25
.2
4

32
.8
1

53
.0
1

93
.4
0

-

G
rie
w
an
gk

x!
:[−

5.
12
,5
,1
2]
n
,n

=
10

16
.7
8

1.
0
[9
7%

](
29
.7
)

46
.8
[6
1%

]
-

-
-

43
0.
57

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 23 of 40

nine out of the fifteen functions tested. Moreover, in half of the functions, in which

ARACO obtains the best results from among all the methods, it is able to optimize the

functions with less than half the number of function evaluations of the second best al-

gorithm. If the performance is compared with the other algorithms, the difference be-

comes even more impressive, where it is shown as being more than 90% better.

Emphasis is placed here upon the fact that, in the six functions that ARACO does

not obtain the best results, it is in second place, showing a worse performance only to

RACO. It is possible to improve these results by expanding the area around the lowest

value found, in all variables, instead of expanding only in the most stagnant variable.

However, tests showed that this action results in a lower number of function evalua-

tions, but causes a considerable decrease in the values of another important parameter

shown in Table 4—the success rate. The success rate is important as not all algorithms

find the optimal solution in every execution. However, through the success rate, it is

possible to measure the percentage of executions of the algorithm that find the optimal

solution for each function. The percentage shown in square brackets in the table shows

the success rate of the algorithms. When there is no percentage in square brackets, it

means that all executions were performed with success. In all the proposed functions,

ARACO is able to find the optimal solution with a success rate equal to or higher than

its main competitor, RACO. For example, the RACO success rate for the Hartmann

function (H6,4) is 50% and for the Shekel function (S4,5) it is 56%, whereas for ARACO

these values are 97% and 87%, respectively. This superiority in terms of success rate

can be explained by the strategy used to avoid stagnating the algorithm, through the

expansion of the domain around the best solution found. In this way, there is a greater

possibility of a continuous improvement of the values found, instead of the algorithm

being stuck in a region of local minimum, making the success rate of ARACO equal to

or near 100%, for all fifteen functions.

In this way, it can be said that the performance of ARACO is superior to the other al-

gorithms, as it manages to find the optimal value, using a lesser amount of function

evaluations for this. In addition to achieving a higher success rate, that is, it finds the

optimal solution in a higher percentage of executions, when compared to the other

algorithms.

Figure 4 shows a comparison between the two algorithms that have the best results,

in relation to ANFE, for the first 5 benchmark functions in Table 4.

Methods inspired on the behavior of ants

The methods used for comparison in this scenario are CACO (Continuous ACO), API

(after Pachycondyla APIcalis), and CIAC (Continuous Interacting Ant Colony). The pa-

rameters used for the algorithms are the following: for CACO, the ant size m = 10,

number of regions r = 200, mutation probability p1 = 0.5, fashion crossover probability

p2 = 1; for API, the ant size m = 20, number of explorations for each ant t = 50, failed

search times Placal = 50; for CIAC, the ant size m = 100, ranges distribution ratio σ =

0.5, persistence of pheromonal spots ρ = 0.1, initial messages number μ = 10; for

ACOR, the ant size m = 2, speed of convergence n = 0.85, locality of the search process

q = 10−1 and archieve size k = 50 [19]. The RACO parameters are the same as

ARACO.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 24 of 40

The results used to compare ACOR, CACO, API, and CIAC were obtained from Dor-

igo et al. [19], whereas the results used for comparison with RACO were obtained from

Chen et al. [24].

The benchmark functions used in this scenario are found on the previously presented

Tables 1 and 4. The ARACO algorithm was run 100 times for each benchmark func-

tion and the comparison criterion used in this section is the average number of func-

tion evaluations (ANFE) executed until the termination condition was reached, in

addition to the success rate. The Eq. (17) determines the termination condition.

f - f �j j < ∈1� f � þ ∈2 ð17Þ

where f is the best heuristic value found by ARACO, f* is the optimal value found in

the literature for the benchmark function, and ∈1 = ∈2 = 10-4.

Table 5 shows the average number of function evaluations (ANFE) necessary for each

method to find the termination condition. As in the previous section, the average is

shown in parentheses only for the algorithm that has the best result for a function; the

other averages can be calculated proportionally based on the value shown in the table.

The percentage shown in square brackets in the table shows the success rate of the al-

gorithms. When there is no percentage in square brackets, it means that all executions

were performed with success. One notes that in relation to ANFE, ARACO obtains bet-

ter or equal results in five of the eight benchmark functions tested. This algorithm

comes in second place in the other three functions. However, in these cases, as well as

in all evaluated functions, the success rate achieved by ARACO is equal to or higher

than all other algorithms, not reaching 100% only in the Shekel function (S4,5).

The conclusion is therefore reached that ARACO presents a superior performance

over the other algorithms in relation to the average number of function evaluations ne-

cessary to reach the termination condition, and when it does not, it is able to obtain a

higher success rate. This is due to algorithm that attempts to minimize the number of

function evaluations needed to reach the optimal value, with the highest possible suc-

cess rate.

Fig. 4 Comparison of results of ARACO and RACO

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 25 of 40

Ta
b
le

5
C
om

pa
ris
on

of
re
su
lts

of
A
RA

C
O
,R
A
C
O
,A

C
O
R
,a
nd

m
et
ho

ds
in
sp
ire
d
on

th
e
be

ha
vi
or

of
an
ts

Fu
nc

ti
on

A
RA

C
O

RA
C
O

A
C
O
R

C
A
C
O

A
PI

C
IA
C

Ro
se
nb

ro
ck

(R
2)

x!
:[−

5,
10
]n
,n

=
2

1.
0
(7
4.
8)

1.
05

10
.9
6

90
.9
8

13
1.
55

15
3.
47

Sp
he

re
x!
:[−

5.
12
,5
.1
2]
n
,n

=
6

1.
0
(1
6.
4)

2.
86

47
.6
2

13
33
.4
1

61
9.
08

30
47
.8
0

G
rie
w
an
gk

x!
:[−

5.
12
,5
,1
2]
n
,n

=
10

16
.6
1

1.
0
(3
0)

[9
7%

]
46
.3
3
[6
1%

]
16
68

-
16
68

[5
2%

]

G
ol
ds
te
in

an
d
Pr
ic
e

x!
:[−

2,
2]
n
,n

=
2

1.
0
(1
7)

2.
88

22
.5
8

31
6.
23

-
13
77
.8
8
[5
6%

]

M
ar
tin

an
d
G
ad
dy

x!
:[−

20
,2
0]
n
,n

=
2

1.
0
(1
6)

1.
0

21
.5
6

10
7.
81

-
73
3.
12

[2
0%

]

B 2
x!
:[−

10
0,
10
0]
n
,n

=
2

1.
0
(1
9.
8)

4.
07

27
.3
7

-
-

60
2.
31

Ro
se
nb

ro
ck

(R
5)

x!
:[-
5,
10
]n
,n

=
5

2.
01

1.
0
(1
84
.3
)

13
.4
9
[9
7%

]
-

-
21
5.
90

[9
0%

]

Sh
ek
el
(S
4,
5)

x!
:[0
,1
0]
n
,n

=
4

6.
06

[8
7%

]
1.
0
(4
7.
9)

[5
6%

]
16
.4
3
[5
7%

]
-

-
82
1.
5
[5
%
]

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 26 of 40

Figure 5 shows a comparison between the two algorithms that have the best results,

in relation to ANFE, for some of the benchmark functions in Table 5.

Tests where the initial domain does not contain the optimal solution

Among all the algorithms cited in the previous section, only RACO has the capacity to

find the ideal solution, given an initial domain that does not contain this solution.

Therefore, all tests performed in this scenario compare only ARACO and RACO, the

only broad-range search algorithms.

For the comparison between the two algorithms, 14 functions are used. Table 6

shows 8 of these functions, whereas the others were presented previously in this article.

The Function column shows the name of the benchmark function. The Formula col-

umn shows the formula used to calculate the value of the function that will be mini-

mized or maximized. The Optimal column shows the ideal value for each variable of

the function. The Minimum column shows the minimum value of the function, when

the optimal values for each of the variables are found. The ARACO algorithm was run

20 times for each benchmark function in each domain provided and the comparison

criteria used in this section are the average number of function evaluations (ANFE)

performed until the termination condition was reached, in addition to the success rate.

The Eq. (18) determines the termination condition.

max h1; h2;…; hnð Þ < ∈ ð18Þ

where hi (i =1, 2, ..., n) is the value of each division of the domain grid, given by Eq. 1

and ∈ is 10−5.

For the execution of the tests, as performed by Chen et al. [24] in the implementation

of the RACO algorithm, five scenarios are used, which are equivalent to five domains

that do not have the ideal solution. These are:

Fig. 5 Comparison of results of ARACO and RACO

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 27 of 40

Ta
b
le

6
Th
ird

pa
rt
of

be
nc
hm

ar
k
fu
nc
tio

ns
Fu

nc
ti
on

Fo
rm

ul
a

O
p
ti
m
al

x*
M
in
im

um
f(
x*
)

Ra
st
rig

in
fð

x!
Þ¼

ðx 1
2
þ
x 2

2
−
co
sð1

8x
1
Þ−

co
s1
8x

2
x�!

¼
ð0
;0
Þ

f m
in
=

0.
39
78
87

Sh
ub

er
t

fð
x!
Þ¼

ðX5 i¼
1

i
co
sði

þ
ðiþ

1Þx
1
ÞÞð

X5 i¼
1

i
co
sði

þ
ðiþ

1Þx
2
ÞÞ

18
op

tim
a

f m
in
=
−

18
6.
73
09

A
ck
le
y

fð
x!
Þ¼

−
20

ex
pð
−
0:
2

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffiffi

1 n

Xn i¼
1

x i
2

s
Þ−

ex
pð
1 n

Xn i¼
1

co
sð2

πx
iÞÞ

x�!
¼

ð0
;…

;0
Þ

f m
in
=
0

Le
vy

fð
x!
Þ¼

si
n2
ðπ
y 1
Þþ

Xn−1 i¼
1

½ðy
i−
1Þ

2
ð1

þ
10

si
n2
ðπ
y 1

þ
1Þ
Þ�
þ
ðy n

−
1Þ2

ð1
þ
10

si
n2
2π

y n
ÞÞ

y i
¼

1
þ

1 4
ðx i

−
1Þ

x�!
¼

ð1
;…

;1
Þ

f m
in
=
0

Be
al
e

fð
x!
Þ¼

ð1:
5−

x 1
þ
x 1
x 2
Þ2

þ
ð2:

25
−
x 1

þ
x 1
x 2

2
Þ2

þ
ð2:

62
5−

x 1
þ
x 1
x 2

3
Þ2

x�!
¼

ð3
;0
:5
Þ

f m
in
=
0

Si
x-
H
um

p
C
am

el
-B
ac
k

fð
x!
Þ¼

4x
1
2
−
2:
1x

1
4
þ
x 1

6
� 3

þ
x 1
x 2
−
4x

2
2
þ
4x

2
4

x�!
¼

ð0
:0
89
83
;−

0:
71
26
Þ;

(−
0.
08
98
3,
0.
71
26

f m
in
=
0

Bo
ha
ch
ev
sk
y

fð
x!
Þ¼

x 1
2
þ
x 2

2
−
0:
3
co
sð3

πx
1
Þþ

0:
3
co
sð4

πx
2
Þþ

0:
3

x�!
¼

ð0
;0
:2
4Þ
;ð0

;−
0:
24
Þ

f m
in
=
−

0.
24

H
an
se
n

fð
x!
Þ¼

ðc
os
ð1Þ

þ
2
co
sðx

1
þ
2Þ

þ
3
co
sð2

x 1
þ
3Þ

þ
4
co
sð3

x 1
þ
4Þ

þ
5
co
sð4

x 1
þ
5ÞÞ

ðc
os
2x

2
þ
1Þ

þ
2
co
sð3

x 2
þ
2Þ

þ
3
co
sð4

x 2
þ
3Þ

þ
4
co
s5
x 2

þ
4Þ

þ
5
co
sð6

x 2
þ
5ÞÞ

x�!
¼

ð−
1:
30
67
1;
4:
85
80
6Þ

f m
in
=
−

17
6.
54
18

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 28 of 40

� Two positives and larges domains x1min = 100, x1max = 200, x2min = 50 and x2max =

80

� Two negatives and larges domains x1min = −300, x1max = −180, x2min = −600 and

x2max = −50

� One positive and one negative domain, far from the ideal solution x1min = 1800,

x1max = 1900, x2min = −230 and x2max = −110

� One positive and one negative domain, extremely narrow x1min = 1, x1max = 2, x2min

= −3 and x2max = −1

� One small and positive domain, and one large and negative domain x1min = 100,

x1max = 110, x2min = −300, and x2max = −190

Table 7 shows the comparison between the results found by ARACO and RACO, re-

garding ANFE and the success rate. It is important to note that, in some scenarios,

RACO cannot find the optimal solution for some functions. These cases are marked

with a – in the table, symbolizing that RACO was unable to find the optimal solution

in any of the twenty executions. This occurs in one proposed domain for the Shubert

function, three proposed domains for the Ackley function, two proposed domains for

the Levy function, and one proposed domain for the Six-Hump Camel-Back function.

This situation does not occur with ARACO and is one of the great advantages observed

in the algorithm, as it is also able to find the optimal solution in all scenarios for all the

benchmark functions tested.

If the comparison is performed according to ANFE, in the first scenario, ARACO is

superior to RACO in 12 of the 14 functions proposed, reaching a result 82% lower than

that provided by RACO, in the Six-Hump Camel-Back function. For the Griewangk

function, in which RACO has superior performance, it is important to highlight that

the success rate of RACO is 70%, whereas ARACO has a 100% success rate, which

demonstrates the advantage of ARACO in finding the optimal solution in all execu-

tions, a fact that as previously stated, represents a great advantage of the algorithm.

Figure 6 shows a comparison between the RACO and ARACO algorithms in the first

proposed scenario, in relation to ANFE, in some of the benchmark functions in table 7.

The second proposed scenario presents similar results in relation to ANFE, with

ARACO surpassing RACO in 12 of the 14 proposed functions, reaching a result 79%

lower than that provided by RACO, in the Bohachevsky function. For the Griewangk

function, where RACO shows superior performance, the RACO’s success rate is 80%,

whereas ARACO has a 100% success rate. For the Ackley function, RACO cannot find

the optimal solution in any run, whereas ARACO finds the solution in all runs.

In the third scenario, ARACO also is superior to RACO in 12 of the 14 proposed

functions in relation to ANFE, reaching a result 75% lower than that provided by

RACO, in the Six-Hump Camel-Back function. Noteworthy here is that, RACO

achieves only 40% success rate in the Griewangk function, whereas ARACO has super-

ior performance in relation to ANFE, in addition to reaching a 100% success rate.

RACO cannot find the optimal solution to the Ackley function, whereas ARACO can

find 85% of the executions.

The fourth scenario is where the difference becomes most significant, as ARACO ob-

tains superior performance in all 14 proposed functions in relation to ANFE, reaching

a result 79% lower than that provided by RACO, in the Bohachevesky function. In

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 29 of 40

Ta
b
le

7
C
om

pa
ris
on

of
re
su
lts

of
A
RA

C
O
an
d
RA

C
O
w
he

n
th
e
in
iti
al
do

m
ai
n
do

es
no

t
co
nt
ai
n
th
e
op

tim
al
so
lu
tio

n

x 1
=
(1
00

,2
00

)
x 2

=
(5
0,

80
)

x 1
=
(−
30

0,
18

0)
x 2

=
(−
60

0,
−
50

)
x 1

=
(1
80

0,
19

00
)

x 2
=
(−
23

0,
11

0)
x 1

=
(1
,2

)
x 2

=
(−
3,

−
1)

x 1
=
(1
00

,1
10

)
x 2

=
(−
30

0,
−
19

0)
Fu

nc
ti
on

s

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
N
FE

38
0

38
3

16
1

37
0

20
57

15
59

35
11
1

41
5

29
2

G
ol
ds
te
in

an
d
Pr
ic
e

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

A
N
FE

54
15
5

53
17
1

72
18
7

38
10
8

57
16
3

Za
kh
ar
ov

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

A
N
FE

59
15
5

64
16
9

72
18
4

44
12
5

60
16
4

M
ar
tin

an
d
G
ad
dy

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

A
N
FE

23
9

18
8

36
8

22
0

21
4

21
7

37
10
8

30
0

24
9

G
rie
w
an
gk

Su
cc
es
s
Ra
te

10
0%

70
%

10
0%

80
%

10
0%

40
%

10
0%

10
0%

10
0%

25
%

A
N
FE

94
15
6

79
18
9

79
19
0

63
11
1

82
15
9

Ra
st
rig

in

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

A
N
FE

12
3

15
1

13
3

28
2

12
4

28
4

54
-

96
26
6

Sh
ub

er
t

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

0%
10
0%

10
0%

A
N
FE

12
1

17
1

11
9

-
39
2

-
59

10
8

16
6

-
A
ck
le
y

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

0%
85
%

0%
10
0%

10
0%

10
0%

0%

A
N
FE

48
15
7

52
17
0

61
18
2

37
10
8

52
15
6

B2

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

A
N
FE

52
15
7

52
17
0

38
5

26
1

37
-

19
6

-
Le
vy

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

0%
10
0%

0%

A
N
FE

68
17
8

67
17
8

10
4

19
0

46
11
8

77
16
7

Be
al
e

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

A
N
FE

35
2

25
3

25
7

24
2

79
4

80
2

12
4

16
3

70
9

42
3

Ro
se
nb

ro
ck

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 30 of 40

Ta
b
le

7
C
om

pa
ris
on

of
re
su
lts

of
A
RA

C
O
an
d
RA

C
O
w
he

n
th
e
in
iti
al
do

m
ai
n
do

es
no

t
co
nt
ai
n
th
e
op

tim
al
so
lu
tio

n
(C
on

tin
ue
d)

x 1
=
(1
00

,2
00

)
x 2

=
(5
0,

80
)

x 1
=
(−
30

0,
18

0)
x 2

=
(−
60

0,
−
50

)
x 1

=
(1
80

0,
19

00
)

x 2
=
(−
23

0,
11

0)
x 1

=
(1
,2

)
x 2

=
(−
3,

−
1)

x 1
=
(1
00

,1
10

)
x 2

=
(−
30

0,
−
19

0)
Fu

nc
ti
on

s

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
RA

C
O

RA
C
O

A
N
FE

39
15
3

35
16
9

58
18
2

25
11
9

34
16
8

Bo
ha
ch
ev
es
ky

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

A
N
FE

18
3

20
5

22
5

26
1

19
7

26
0

57
11
3

15
8

18
8

H
an
se
n

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

95
%

A
N
FE

30
16
6

37
17
4

43
17
7

45
-

36
17
6

Si
x-
H
um

p
C
am

el
-B
ac
k

Su
cc
es
s
Ra
te

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

0%
10
0%

10
0%

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 31 of 40

addition, RACO cannot find the optimal solution in none of the executions of the Six-

Hump Camel-Back, Shubert and Levy functions, whereas ARACO achieves a 100% suc-

cess rate in all the proposed functions.

Finally, in the fifth scenario, ARACO surpasses RACO in 11 of the 14 functions pro-

posed in relation to ANFE, reaching a result 81% lower than that provided by RACO,

in the Six-Hump Camel-Back function. For the Griewangk function, where RACO has

superior performance, emphasis is placed on the fact that RACO’s success rate is 25%,

whereas ARACO has a 100% success rate. In the Ackley and Levy functions, RACO

cannot find the optimal solution in any of the executions, whereas ARACO achieves a

100% success rate.

All these comparisons show that ARACO has superior performance, that is, a lower

ANFE’s value, in 87% of the tests performed in scenarios where the initial domain pro-

vided does not contain the ideal solution. In some of the tests where ARACO does not

surpass RACO, RACO cannot find the optimal solution in all runs, whereas ARACO

can find the optimal solution in more runs within these scenarios. In addition, RACO

cannot find the solution in none of the executions in seven proposed scenarios,

whereas ARACO can find the optimal solution in all of these scenarios. All of this

points to the superiority of ARACO, both in terms of finding the optimal solution in a

lower average number of function evaluations (ANFE), as well as to achieve a higher

success rate, and finding the optimal solution in all the proposed scenarios. Improved

values for ANFE are obtained thanks to the acceleration of the adaptive domain adjust-

ment parameters in opportune moments, allowing for a domain, where the optimal so-

lution is present, to be found more quickly, additionally, when found, the domain

adjustment process is accelerated so that the value can be found faster. Whereas, the

highest success rate and the possibility of finding the optimal solution in all scenarios,

are advantages obtained thanks to the strategy of expansion of the domain around the

best solution found. Thus, when the algorithm enters a state of stagnation, it allows for

the generation of a new domain outside the local minimum region.

Fig. 6 Comparison of results of ARACO and RACO

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 32 of 40

Tests with the CEC 2019 benckmark functions

The CEC 2019 benchmark test functions [31] are a group of functions that are difficult

to optimize, known as “The 100-digit challenge” and which were used in an annual

optimization competition in 2019. The functions are presented in Table 8. The Func-

tion column shows the name of the benchmark function. The Formula column shows

the formula used to calculate the value of the function that will be minimized or maxi-

mized. The Minimum column shows the minimum value of the function, when the op-

timal values for each of the variables are found. The metaheuristics used for

comparison in this scenario are PSO-based algorithms, those being the Fitness

Dependent Optimizer (FDO) [32], the Dragonfly Algorithm (DA) [33], the Whale

Optimization Algorithm (WOA) [34], and Salp Swarm Algorithm (SSA) [35].

In order to facilitate the evaluation, all implementations of the CEC 2019 100-Digit

Challenge benchmark functions, used in the competition in 2019 and also in ARACO

and the other algorithms, were adapted so that the optimal values sought were 1. All

the CEC 2019 100-Digit Challenge benchmark functions defined have 10 dimensions

and the domain provided to the algorithms is ximin = −100 and ximax = 100, for each di-

mension i, except for the functions Storn’s Chebyshev Polynomial Fitting Problem, In-

verse Hilbert Matrix Problem, and Lennard-Jones Minimum Energy Cluster, which

have different dimensions and different initial domains, as shown in Table 9.

The results used to compare FDO, DA, WOA, and SSA were obtained from Abdullah

and Ahmed [32]. All algorithms were executed 30 times for each benchmark function

and the comparison criterion used in this section is the average of the minimum value

found by the algorithms, after 500 iterations have been run.

Table 9 shows the comparison among the averages of the minimum values found by

the algorithms after 30 executions, with 500 iterations each execution. Noteworthy here

is that the results obtained by ARACO are superior to those encountered by the other

algorithms in six out of the ten benchmark functions tested. The algorithm is in second

place in three other functions, and it is in third place only in the Weierstrass function.

One notes, the results found by ARACO are competitive and, still further, it is the

only algorithm that has results that approach the optimal value with only 500 iterations

covered, managing to find the whole number of the optimal value in 4 of the functions

tested.

Figure 7 shows a comparison between the results encountered by the five algorithms

covered in this scenario, in relation to the average of the minimum value found for

some of the benchmark functions in Table 9, after the execution of 500 iterations.

However, it is important to highlight that ARACO achieves even better results for

the proposed benchmark functions, after the 500 iterations set. However, in order for a

fair comparison to be made, the same criteria and termination condition defined by the

other algorithms were maintained. In spite of that, to guide future comparisons in fu-

ture studies, the results achieved by ARACO, after the execution of 5000 iterations, are

presented below. One notes that with this termination condition, the algorithm

achieves results superior to those achieved with 500 iterations. This proves that, as iter-

ations pass, ants are able find even better solutions. Table 10 shows the average for the

minimum value achieved by ARACO after 30 executions, with 5000 iterations each

execution.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 33 of 40

Ta
b
le

8
C
EC

20
19

10
0-
D
ig
it
C
ha
lle
ng

e
be

nc
hm

ar
k
fu
nc
tio

ns

Fu
nc

ti
on

Fo
rm

ul
a

M
in
im

um
f(
x*
)

St
or
n’
s
C
he

by
sh
ev

Po
ly
no

m
ia
lF
itt
in
g
Pr
ob

le
m

fð
x!
Þ¼

p 1
þ
p 2

þ
p 3

p 1
¼

ðu
−
dÞ

2
;i
f
u
<

d
0;

;o
th
er
w
ise

	

u
¼

PD j¼
1
x j
ð1:

2Þ
D
−
j

p 2
¼

ðv−
dÞ

2
;i
f
v
<

d
0;

;o
th
er
w
ise

	

v
¼

PD j¼
1
x j
ð−
1:
2Þ

D
−
j

pk
¼

ðw
k−
1Þ2

;i
f
w

k
>

1
ðw

k
þ
1Þ

2
;i
f
w

k
<

1
0;

;o
th
er
w
ise

8 < :
w

k
¼

PD j¼
1
x j
ð2k m

−
1ÞD

−
j

p 3
¼

Pm m
¼0

p k
;
k
¼

0;
1;
…
;m

;
m

¼
32
D

d
=
72
.6
61

fo
r
D
=
9

f m
in
=
1

In
ve
rs
e
H
ilb
er
t
M
at
rix

Pr
ob

le
m

fð
x!
Þ¼

Xn i¼
1

Xn k¼
1

jw
i;k
j

ðw
i;k
Þ¼

W
¼

H
Z
−
I;

I¼
1

0
⋯

0
0

1
…

0
⋮

0
⋱

⋮
0

0
⋯

1

2 6 6 4
3 7 7 5

H
¼

ðh
i;k
Þ;

h i
;k
¼

1
iþ
k−

1
;
i;
k
¼

1;
2;
…
;n
;
n
¼

ffiffiffi Dp
Z
=
(z
i,
k)
,
z i,

k
=
x i
+
n
(k
−
1)

f m
in
=
−
18
6.
73
09

Le
nn

ar
d-
Jo
ne

s
M
in
im

um
En
er
gy

C
lu
st
er

fð
x!
Þ¼

12
:7
12
06
22
56
8
þ
Xn−1 i¼

1

Xn j¼
iþ
1ð1 d2 i;

j−
2 d i
;j
Þ

d i
;j
¼

ðP2 k¼
0
ðx 3

iþ
k−

2
−
x 3

jþ
k−

2
Þ2 Þ

3

;n
¼

D 3

f m
in
=
1

Ra
st
rig

in
’s
Fu
nc
tio

n
f m

in
=
1

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 34 of 40

Ta
b
le

8
C
EC

20
19

10
0-
D
ig
it
C
ha
lle
ng

e
be

nc
hm

ar
k
fu
nc
tio

ns
(C
on

tin
ue
d)

Fu
nc

ti
on

Fo
rm

ul
a

M
in
im

um
f(
x*
)

fð
x!
Þ¼

XD i¼
1

ðx2 i
−
10

co
sð2

πx
iÞþ

10
Þ

G
rie
w
an
gk
’s
Fu
nc
tio

n
fð

x!
Þ¼

XD i¼
1

x i
2

40
00

−
YD i¼

1

co
sð
x i
ffiffi ip
Þþ

1
f m

in
=
1

W
ei
er
st
ra
ss

Fu
nc
tio

n
fð

x!
Þ¼

XD i¼
1

ðXk max k¼
0

½ak
co
sð2

πb
k ðx

i
þ
0:
5ÞÞ

�Þ−
D
Xk max k¼

0

ak
co
sðπ

bk
Þ

a
=
0.
5,

b
=
3,

k m
a
x
=
20

f m
in
=
1

M
od

ifi
ed

Sc
hw

ef
el
’s
Fu
nc
tio

n
fð

x!
Þ¼

41
8:
98
29
D
−
XD i¼

1

gð
z i
Þ

z i
=
x i
+
42
0.
96
87
46
22
75
03
6

gð
z i
Þ¼

z i
si
nð
jz i
j1 2
Þ

if
jz

i
j≤

50
0

ð5
00
−
m
od

ðz i
;5
00
ÞÞ

si
nð

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffi
j50

0−
m
od

ðz i
;5
00
Þj

p
Þ−

ðz i
−
50
0Þ2

10
00
0D

if
z i
>

50
0

ðm
od

ðz i
;5
00
Þ−
50
0Þ

si
nð

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffi
jm

od
ðz i

;5
00
Þ−
50
0j

p
Þ−

ðz i
þ5

00
Þ2

10
00
0D

if
z i
<

−
50
0

8 > < > :

f m
in
=
1

Ex
pa
nd

ed
Sc
ha
ffe
r’s

F6
Fu
nc
tio

n
gð
x;
yÞ

¼
0:
5
þ

si
n2
ð

ffiffiffiffiffiffiffiffi
ffi

x2
þy

2
p

Þ−
0:
5

ð1þ
0:
00
1ðx

2
þy

2
ÞÞ2

fð
x!
Þ¼

gð
x 1
;x

2
Þþ

gð
x 2
;x

3
Þ…

þ
gð
x D

−
1
;x

D
Þþ

gð
x D
;x

1
Þ

f m
in
=
1

H
ap
py

C
at

Fu
nc
tio

n
fð

x!
Þ¼

jXD i¼
1

x2 i
−
D
j1=

4

þ
ð0:

5
XD i¼

1

x2 i
þ
XD i¼

1

x i
Þ=
D
þ
0:
5

f m
in
=
1

A
ck
le
y
Fu
nc
tio

n
fð

x!
Þ¼

−
20

ex
pð
−
0:
2

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

1 n

Xn i¼
1

x i
2

s
Þ−

ex
pð
1 n

Xn i¼
1

co
sð2

πx
iÞÞ

f m
in
=
1

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 35 of 40

Ta
b
le

9
C
om

pa
ris
on

of
re
su
lts

of
A
RA

C
O
an
d
ot
he

r
m
et
ah
eu
ris
tic
s
in

te
st
s
w
ith

th
e
C
EC

20
19

10
0-
D
ig
it
C
ha
lle
ng

e
be

nc
km

ar
k
fu
nc
tio

ns

Fu
nc

ti
on

A
RA

C
O

FD
O

D
A

W
O
A

SS
A

St
or
n’
s
C
he

by
sh
ev

Po
ly
no

m
ia
lF
itt
in
g
Pr
ob

le
m

x!
:[−

81
92
,8
19
2]
n
,n

=
9

5.
60
E9

45
85
.2
7

5.
43
E1
0

4.
11
E1
0

6.
05
E9

In
ve
rs
e
H
ilb
er
t
M
at
rix

Pr
ob

le
m

x!
:[−

16
38
4,
16
38
4]
n
,n

=
16

1.
92
43

4
78
.0
36
8

17
.3
49
5

18
.3
43
4

Le
nn

ar
d-
Jo
ne

s
M
in
im

um
En
er
gy

C
lu
st
er

x!
:[−

4,
4]
n
,n

=
18

12
.6
73
6

13
.7
02
4

13
.7
02
6

13
.7
02
4

13
.7
02
5

Ra
st
rig

in
’s
Fu
nc
tio

n
x!
:[−

10
0,
10
0]
n
,n

=
10

5.
64
95

34
.0
83
7

34
4.
35
61

39
4.
67
54

41
.6
93
6

G
rie
w
an
gk
’s
Fu
nc
tio

n
x!
:[−

10
0,
10
0]
n
,n

=
10

1.
06
35

2.
13
92

2.
55
72

2.
73
42

2.
20
84

W
ei
er
st
ra
ss

Fu
nc
tio

n
x!
:[−

10
0,
10
0]
n
,n

=
10

10
.5
28
8

12
.1
33
2

9.
89
55

10
.7
08
5

6.
07
98

M
od

ifi
ed

Sc
hw

ef
el
’s
Fu
nc
tio

n
x!
:[−

10
0,
10
0]
n
,n

=
10

1.
00
05

12
0.
48
58

57
8.
95
31

49
0.
68
43

41
0.
39
64

Ex
pa
nd

ed
Sc
ha
ffe
r’s

F6
Fu
nc
tio

n
x!
:[−

10
0,
10
0]
n
,n

=
10

1.
82
66

6.
10
21

6.
87
34

6.
90
9

6.
37

H
ap
py

C
at

Fu
nc
tio

n
x!
:[−

10
0,
10
0]
n
,n

=
10

3.
05
13

2
6.
04
67

5.
93
71

3.
67
23

A
ck
le
y
Fu
nc
tio

n
x!
:[−

10
0,
10
0]
n
,n

=
10

12
.9
82
2

2.
71
82

21
.2
60
4

21
.2
76
1

21
.0
4

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 36 of 40

Conclusions
ARACO was proposed with the objective of allowing for the solving of optimization

problems in the real world, searching for the optimal solution, providing initial do-

mains with or without the optimal solution. For such, an improvement in the RACO al-

gorithm was proposed, allowing the acceleration of the parameters responsible for the

locating and narrowing of the correct domain, in order to accelerate performance. In

addition to a strategy that allows the algorithm to leave local minimum regions, permit-

ting ARACO to find the optimal solution in practically all runs.

Tests were executed to prove the proposed strategies in relation to their operation in

provided domains that contain the optimal solution. As such, ARACO provides prom-

ising results, showing superiority regarding the number of function evaluations neces-

sary to reach the optimal value, in a majority of the tested benchmarks functions,

across three proposed comparison groups. These groups were probability-learning

methods that model and sample probability distributions, metaheuristics developed for

combinatorial optimization and adapted to continuous domains, along with methods

inspired by the behavior of ants.

Table 10 Results of ARACO after running 5000 iterations

Function ARACO

Storn’s Chebyshev Polynomial Fitting Problem x!:[−8192, 8192]n, n = 9 5.23E6

Inverse Hilbert Matrix Problem x!:[−16384, 16384]n, n = 16 1.3992

Lennard-Jones Minimum Energy Cluster x!:[−4, 4]n, n = 18 8.3911

Rastrigin’s Function x!:[−100, 100]n, n = 10 3.3252

Griewangk’s Function x!:[−100, 100]n, n = 10 1.0085

Weierstrass Function x!:[−100, 100]n, n = 10 2.2961

Modified Schwefel’s Function x!:[−100, 100]n, n = 10 1.0001

Expanded Schaffer’s F6 Function x!:[−100, 100]n, n = 10 1.2062

Happy Cat Function x!:[−100, 100]n, n = 10 2.4945

Ackley Function x!:[−100, 100]n, n = 10 10.8957

Fig. 7 Comparison of results of ARACO and other metaheuristics

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 37 of 40

The obtainment of good results, through operating in provided domains that do not

contain the optimal solution, is very desirable, as in real-world problems one cannot al-

ways be guarantee that the initial domain provided for the algorithm contains the opti-

mal solution. In these cases, ARACO demonstrates a very effective performance, since

in addition to being able to find the optimal value in a lower number of function evalu-

ations than its predecessor RACO in 87% of the tested scenarios; it is able to find the

optimal value in all the proposed scenarios, achieving a 100% success rate on virtually

all tested functions. These advantages are obtained thanks to the acceleration of the

adaptive domain adjustment parameters at opportune moments, allowing for a greater

speed of convergence of the algorithm was obtained, and thanks to the extension of the

domain around the best solution found, when the algorithm is stagnant. Thus, allowing

for the generation of a new domain that contains values outside the local minimum

region.

On the subject of the tests performed with CEC 2019 100-Digit Challenge benchmark

functions, ARACO obtained excellent results, showing a superior performance over the

other algorithms in most of the tested benchmark functions, as well as being the only

algorithm to achieve the results closest to the optimum values in 500 iterations. In

addition, the results can be further improved if more iterations are executed.

As future work, the algorithm can be expanded to allow for working with functions

that have more variables, achieving a good performance, especially without compromis-

ing the accuracy and the success rate obtained. These results have already been suc-

cessfully accomplished in some of the functions implemented in the work, such as the

functions with 10 variables Sphere, Ellipsoid, Cigar, and Tablet. However, in other

functions such as Griewangk (10 variables) and Hartmann (6 variables), the algorithm

achieves high success rates, but loses in performance, performing a large number of

function evaluations until it finds the optimal value. The implemented CEC 2019 100-

Digit Challenge benchmark functions also demonstrate the need to determine better

strategies to obtain superior results in functions that have more dimensions. In

addition, a study can be performed to determine better strategies for detecting domain

stagnation and obtain better domain expansion rates around the best solution found,

according to the nature of the functions, to further improve the results obtained.

As one of the proposals of the ARACO algorithm is its applicability in solving real-

world problems, another future work should therefore be based on the practical appli-

cation of the algorithm in real-world situations.

Acknowledgements
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
The authors did not receive support from any organization for the submitted work.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations

Competing interests
The authors declare that they have no competing interests.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 38 of 40

Received: 12 February 2021 Accepted: 30 August 2021

References
1. Antoniou A, Lu WS (2007) The optimization problem. In: Antoniou A, Lu WS (eds) Practical Optimization. Springer,

Boston, pp 1–26. https://doi.org/10.1007/978-0-387-71107-2_1
2. Edmonds J (2008) How to think about algorithms. Cambridge University Press, New York. https://doi.org/10.1017/

CBO9780511808241
3. Saka MP, Dogan E, Aydogdu I (2013) Analysis of swarm intelligence-based algorithms for constrained optimization. In:

Yang XS, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (eds) Swarm Intelligence and Bio-inspired Compuation. Elsevier,
Oxford. https://doi.org/10.1016/B978-0-12-405163-8.00002-8

4. Kaur SP (2013) Variables in research. Indian J Res Rep Med Sci 3(4):36–38
5. Wu Z, Xue R (2019) A cyclical non-linear inertia-weighted teaching-learning-based optimization algorithm. Algorithms

12(5):94. https://doi.org/10.3390/a12050094
6. Serapião ABS (2009) Fundamentos de otimização por inteligência de enxames: uma visão geral. Sba Controle

Automação 20(3):271–304. https://doi.org/10.1590/S0103-17592009000300002
7. Goldberg DE (1989) Generic Algorithm in search, optimization and machine learning. Addison-Wesley, Reading, Boston
8. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous

spaces. J Glob Optimization 11(4):341–359. https://doi.org/10.1023/A:1008202821328
9. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press,

Cambridge
10. Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical Report 91-016, Politecnico di

Milano
11. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst

Man Cybern Part B (Cybernetics) 26(1):29–41. https://doi.org/10.1109/3477.484436
12. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman

problem. IEEE Trans Evol Comput 1(1):53–66. https://doi.org/10.1109/4235.585892
13. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report – TR06, Erciyes

University, Engineering Faculty Computer Engineering Department Kayseri, Turkey
14. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on

Neural Networks 4, Perth, WA, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
15. Sudholt D, Thyssen C (2012) Running time analysis of ant colony optimization for shortest path problems. J Discrete

Algorithms 10:165–180. https://doi.org/10.1016/j.jda.2011.06.002
16. Ding QL, Hu XP, Sun LJ, Wang YZ (2012) An improved ant colony optimization and its application to vehicle routing

problem with time windows. Neurocomputing 98:101–107. https://doi.org/10.1016/j.neucom.2011.09.040
17. Blum C, Sampels M (2004) An ant colony optimization algorithm for shop scheduling problems. J Math Model

Algorithms 3(3):285–304. https://doi.org/10.1023/B:JMMA.0000038614.39977.6f
18. Dorigo M, Stutzle T (2019) Ant colony optimization: overview and recent advances, Handbook of Metaheuristics. Int Ser

Oper Res Manage Sci 272:311–351. https://doi.org/10.1007/978-3-319-91086-4_10
19. Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155–1173. https://

doi.org/10.1016/j.ejor.2006.06.046
20. Bilchev G, Parmee I (2006) The ant colony metaphor for searching continuous design Spaces. In: Selected Papers from

AISB Workshop on Evolutionary Computing. Springer-Verlag, Berlin, Heidelberg, pp 25–39. https://doi.org/10.1007/3-540-
60469-3_22

21. Huang H, Hao Z (2006) ACO for continuous optimization based on discrete encoding. In: Proceedings of the 5th

International Conference on Ant Colony Optimization and Swarm Intelligence - ANTS 2006. Springer, Berlin, Heidelberg,
pp 504–505. https://doi.org/10.1007/11839088_53

22. Dréo J, Siarry P (2004) Continuous interacting ant colony algorithm based on dense heterarchy. Future Generation
Comput Syst 20(5):841–856. https://doi.org/10.1016/j.future.2003.07.015

23. Monmarché N, Venturini G, Slimane M (2000) On how Pachycondyla apicalis ants suggest a new search algorithm.
Future Generation Comput Syst 16(8):937–946. https://doi.org/10.1016/S0167-739X(00)00047-9

24. Chen Z, Zhou Z, Luo J (2017) A robust ant colony optimization for continuous functions. Expert Syst Appl Int J 81:309–
320. https://doi.org/10.1016/j.eswa.2017.03.036

25. Leguizamón G, Coello CAC (2010) An alternative ACOR algorithm for continuous optimization problems. In: Proceedings
of the 7th International Conference on Ant Colony Optimization and Swarm Intelligence - ANTS 2010. Springer-Verlag,
Berlin, Heidelberg, pp 48–59. https://doi.org/10.1007/978-3-642-15461-4_5

26. Liao TJ, Montes da Oca MA, Aydin D, Stutlze T, Dorigo M (2011) An incremental ant colony algorithm with local search
for continuous optimization. In: Proceedings of the genetic and evolutionary computation conference – GECCO’11.
Association for Computing Machinery, New York, pp 125–132. https://doi.org/10.1145/2001576-2001594

27. Liao TJ, Stutzle T, Montes da Oca MA, Dorigo M (2014) A unified ant colony optimization algorithm for continuous
optimization. Eur J Oper Res 234(3):597–609. https://doi.org/10.1016/j.ejor.2013.10.024

28. Yang Q, Chen W, Yu Z, Gu T, Li Y, Zhang H, Zhang J (2017) Adaptive Multimodal Continuous Ant Colony Optimization.
IEEE Trans Evol Comput 21(2):191–205. https://doi.org/10.1109/TEVC.2016.2591064

29. Liu L, Dai Y (2014) Gao J (2014) Ant colony optimization algorithm for continuous domains based on position
distribution model of ant colony foraging. Sci World J 2014:1–9. https://doi.org/10.1155/2014/428539

30. Kern S, Muller SD, Hansen N, Buche D, Ocenasek J, Koumoutsakos P (2004) Learning probability distributions in
continuous evolutionary algorithms – A comparative review. Nat Comput 3(1):77–112. https://doi.org/10.1023/B:NACO.
0000023416.59689.4e

31. Price KV, Awad NH, Ali MZ, Suganthan PN (2018) The 100-digit challenge: Problem definitions and evaluation criteria for
the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report,
Nanyang Technological University, Singapore

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 39 of 40

https://doi.org/10.1007/978-0-387-71107-2_1
https://doi.org/10.1017/CBO9780511808241
https://doi.org/10.1017/CBO9780511808241
https://doi.org/10.1016/B978-0-12-405163-8.00002-8
https://doi.org/10.3390/a12050094
https://doi.org/10.1590/S0103-17592009000300002
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.jda.2011.06.002
https://doi.org/10.1016/j.neucom.2011.09.040
https://doi.org/10.1023/B:JMMA.0000038614.39977.6f
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1007/3-540-60469-3_22
https://doi.org/10.1007/3-540-60469-3_22
https://doi.org/10.1007/11839088_53
https://doi.org/10.1016/j.future.2003.07.015
https://doi.org/10.1016/S0167-739X(00)00047-9
https://doi.org/10.1016/j.eswa.2017.03.036
https://doi.org/10.1007/978-3-642-15461-4_5
https://doi.org/10.1145/2001576-2001594
https://doi.org/10.1016/j.ejor.2013.10.024
https://doi.org/10.1109/TEVC.2016.2591064
https://doi.org/10.1155/2014/428539
https://doi.org/10.1023/B:NACO.0000023416.59689.4e
https://doi.org/10.1023/B:NACO.0000023416.59689.4e

32. Abdullah JM, Ahmed T (2019) Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE
Access 7:43473–43486. https://doi.org/10.1109/ACCESS.2019.2907012

33. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective discrete
and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

34. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.a
dvengsoft.2016.01.008

35. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv Eng Soft 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 40 of 40

https://doi.org/10.1109/ACCESS.2019.2907012
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2017.07.002

	Abstract
	Introduction
	ARACO
	Problem definition
	Discretization of variables
	Building a new solution
	Adaptive domain adjustment
	Adaptive pheronome increment
	Adaptive domain division
	Adaptive number of ants
	Acceleration of adaptive domain adjustment parameters
	Expansion of the domain around the best solution
	The steps of the ARACO algorithm
	Step by step
	Flowchart

	Experimental results
	Tests where the initial domain contains the optimal solution
	Probability-learning methods that model and sample probability distributions
	Metaheuristics developed for combinatorial optimization and adapted to continuous domains
	Methods inspired on the behavior of ants

	Tests where the initial domain does not contain the optimal solution
	Tests with the CEC 2019 benckmark functions

	Conclusions
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	References
	Publisher’s Note

