de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 JOU rnal Of the
https://doi.org/10.1186/s13173-021-00116-8 - .
Brazilian Computer Society

RESEARCH Open Access

Check for
updates

An accelerated and robust algorithm for
ant colony optimization in continuous
functions

Jairo G. de Freitas'*'® and Keiji Yamanaka®

* Correspondence: jairo@iftm.edu.br
'Instituto Federal do Triangulo

Mineiro (IFTM), Uberaba, MG, Brazil . . . ' . o
zu‘gsgsi(dade)%d::; Se e There is a wide variety of computational methods used for solving optimization

Uberlandia (UFU), Uberlandia, MG, problems. Among these, there are various strategies that are derived from the

Brazl concept of ant colony optimization (ACO). However, the great majority of these
methods are limited-range-search algorithms, that is, they find the optimal solution,
as long as the domain provided contains this solution. This becomes a limitation,
due to the fact that it does not allow these algorithms to be applied successfully to
real-world problems, as in the real world, it is not always possible to determine with
certainty the correct domain. The article proposes the use of a broad-range search
algorithm, that is, that seeks the optimal solution, with success most of the time,
even if the initial domain provided does not contain this solution, as the initial
domain provided will be adjusted until it finds a domain that contains the solution.
This algorithm called ARACO, derived from RACO, makes for the obtaining of better
results possible, through strategies that accelerate the parameters responsible for
adjusting the supplied domain at opportune moments and, in case there is a
stagnation of the algorithm, expansion of the domain around the best solution
found to prevent the algorithm becoming trapped in a local minimum. Through
these strategies, ARACO obtains better results than its predecessors, in relation to the
number of function evaluations necessary to find the optimal solution, in addition to
its 100% success rate in practically all the tested functions, thus demonstrating itself
as being a high performance and reliable algorithm. The algorithm has been tested
on some classic benchmark functions and also on the benchmark functions of the
IEEE Congress of Evolutionary Computation Benchmark Test Functions (CEC 2019
100-Digit Challenge).

Abstract

Keywords: Ant colony optimization, Continuous optimization, Optimization
problems, Nature-inspired heuristic approaches

Introduction

Many important and practical problems can be expressed as optimization problems.
These problems consist of finding the best solution among an exponentially large set
of possible solutions [1]. Optimization is the branch of mathematics that encompasses
the study of the quality of optimal solutions and the methods for finding these [2].

. © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
@ Sprlnger Open permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
— original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-021-00116-8&domain=pdf
http://orcid.org/0000-0001-9186-4581
mailto:jairo@iftm.edu.br
http://creativecommons.org/licenses/by/4.0/

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 2 of 40

Optimization problems occur in most disciplines such as engineering, physics, mathem-
atics, economics, administration, commerce, social sciences, and even politics.
Optimization problems abound in several engineering fields, such as electrical, mechan-
ical, civil, and chemical engineering.

The objective of the optimization process is to find the values of the decision vari-
ables that result in a maximum or minimum of a function called the objective function,
provided that these values meet a set of restrictions or conditions that, necessarily,
must be answered [3].

The numerical decision variables, manipulated by the optimization problems, can be
divided into continuous and discrete. A continuous variable can assume an infinite
number of values between two points. On the other hand, a discrete variable is one that
has a finite number of values between any two points, representing discrete quantities
[4].

Many classic optimization algorithms inspired by nature, based on the use of popula-
tion, have been proposed to solve optimization problems, for which robust solutions
are difficult or impossible to find in polynomial time using traditional approaches [5].

The fundamental principle of some of these algorithms uses a constructive method
for obtaining the initial population (initial feasible solutions) and a local search tech-
nique that gradually improves the solutions generated, considering that the individuals
(solutions) of this population evolve according to specified rules, which consider the ex-
change of information between individuals [6].

Within the evolutionary approach, emphasis is placed on evolutionary algorithms
(EA), such as Genetic Algorithms (GA) [7], Differential Evolution (DE) [8], and Genetic
Programming (GP) [9], and on the swarm-based optimization algorithms (SOA), such
as ant colony optimization (ACO) [10-12], artificial bee colony (ABC) [13], and particle
swarm optimization (PSO) [14].

The ant colony optimization strategy was initially created to solve discrete
optimization problems, such as combinatorial optimization problems (COPs). These
problems can be mapped through graphs, such as the traveling salesman problem [12],
shortest path problem [15], vehicle routing [16], and scheduling [17].

Dorigo et al. [10-12] developed the ACO (ant colony optimization). It is a computa-
tional strategy, based on the foraging behavior of real ants, which simulates the use of
ants, with the objective of solving the traveling salesman problem (TSP). The problem
is represented by a graph, where the vertices represent the cities, and the edges repre-
sent the path between the cities. To solve the problem, artificial ants are randomly ar-
ranged on the edges of the graph. Each ant chooses the next city on its route through a
probabilistic calculation, which considers the amount of artificial pheromone distrib-
uted on that path and the distance between the two cities. It is not possible to visit the
same city twice in one solution. During the route, each ant will release a certain
amount of pheromone along each part of the path followed, to influence the decision
of the path taken by the ants that come next. The amount of pheromone released is in-
versely proportional to the length of the path traveled. The more pheromone there is
on a path, the more attractive that route becomes. Likewise, the shorter the distance
between cities on this path, the more attractive that route becomes. This process is re-
peated until the total route of the traveling salesman for each of the ants is complete.
Hence, the paths between two cities on the graph that the ants traveled along the most

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 3 of 40

will have a greater amount of pheromone, compared to the less traveled paths. The
meta-heuristic will be repeated several times, where new ants will be generated at the
edges of the graph for further execution. The pheromone along each path will be main-
tained, but just as in nature, it will gradually evaporate with each run, allowing unprof-
itable paths to run out of pheromone after several runs of the algorithm. Over the new
iterations that are realized, it is possible to find better solutions, as the pheromones of
these solutions are reinforced, until the optimum path or a path near to the optimum
path is found.

The simplest approach for applying the ACO to continuous problems would be to
discretize the real value domain of the variables, that is, convert the real values into a
finite range of values [18]. Discretizing continuous variables is a complex task, since the
interval where the search will be carried out can be very wide, thus making
discretization impossible [19]. Another possible problem is that the optimal solution
may require a higher degree of precision than that contemplated by the values that
have been discretized. In such cases, if the optimal value is in a space not covered by
discretization, it will not be found.

The ACO proved to be very effective for working with discrete variables, but it dem-
onstrated limitations in problems with continuous variables. There are several pro-
posals put forward for solving this problem.

In the Continuous ACO (CACO) method [20], ants start the search process from a
base point, called a nest. In each iteration, ants store their best solutions in a set of vec-
tors. These best solutions are used probabilistically to guide the search process in the
next iteration. CACO has variations like CACO-DE [21], which performs a discrete
coding of continuous variables. The Continuous Interacting Ant Colony (CIAC) [22]
uses an interaction mechanism between ants, as well as the information left by phero-
mones along the paths traveled, which guides the search process. Another approach
that realizes optimization of problems with continuous variables is the after Pachycon-
dyla APIcalis (API) [23]. In this method, ants conduct their research in parallel around
a starting point, called a nest. The nest is moved periodically, based on the most suc-
cessful searches. According to Chen et al. [24], the abovementioned algorithms were in-
spired on the ACO, but do not strictly follow the structure of the ACO. Therefore,
they are considered algorithms related to ants and not, real extensions of the ACO for
continuous functions.

The algorithms cited below can be classified as ACO extensions for continuous func-
tions [24]. Socha and Dorigo [19] extended ACO so that it could also solve continuous
problems, with the name Extended ACO for continuous domains (ACOg). In this ap-
proach, each variable of an ant obtains its new value through a probabilistic sampling
of a probability density function (PDF). The most widely used PDF for this process is
Gaussian. Gaussian represents a model of distribution of pheromone in the environ-
ment, based on the population archive. The population file is initialized with the m
possible solutions, where m is a parameter that represents the number of solutions that
will be stored. With the representation adopted using the Gaussian function, the values
represented with the highest probability of sampling refer to the best solutions found.
The value of each variable in a new solution is calculated by sampling using two values:
the mean and the standard deviation. The value used as an average is chosen within
the population archive, and values that produced better results are more likely to be

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 4 of 40

selected. The standard deviation is calculated based on the distance between the value
used as an average and the other solutions in the population archive. When all ants re-
ceive their new values for their variables, the pheromone is updated. At each iteration,
the pheromone is updated through a process, in which the new solutions found by the
ants are added to the population archive, which will always remain with the m best
solutions.

There are other algorithms derived from ACOg for the optimization of problems with
continuous functions, such as Diversity ACOr (DACOg) [25]. DACOg is more appro-
priate for continuous optimization problems with a large number of dimensions, as it
tries to avoid loss of diversity in the first iterations. The objective is to preserve diver-
sity for as long as possible, to explore more regions of the search space, before the algo-
rithm converges. Another variation is the Incremental Ant Colony Algorithm with
Local Search (IACOR-LS) [26]. IACOR-LS is a variation of ACOpg, which has a research
diversification strategy that results in an increase in the solutions archive. In addition, a
local search procedure is added to accelerate the process of finding the solution. The
Unified Ant Colony Optimization (UACOR) [27] includes components of the ACOg,
DACOg, and IACOg-LS algorithms, being able to instantiate each one, choosing spe-
cific components of the algorithm and allowing for the automatic adjustment of various
parameters. Adaptive Multimodal Continuous Ant Colony Optimization (AM-ACO) is
an extension of ACOyg for multimodal optimization [28]. AM-ACO uses niching strat-
egies, dividing the total population into smaller parts rather than working with the total
population, and executing an adaptive adjustment of some parameters in this first stage.
Subsequently, a differential evolution mutation operator is used to accelerate the con-
vergence speed. Finally, a local search process is executed, based on the Gaussian distri-
bution. The Ant Colony Optimization Algorithm for Continuous Domains Based on
Position Distribution Model of Ant Colony Foraging [29] is based on the principle that
the ants’ food source is everywhere in the continuous space, and only the quality of the
food source is different. Each ant checks the quality of its position; checks the phero-
mone concentration in the rest of the space, using a group pheromone density func-
tion; and migrates to areas of higher concentration, where it is able to explore
unknown regions during this movement.

All the methods of optimization of continuous functions above belong to a category
called limited-range-search algorithms, that is, they find the ideal solution, but within
the predetermined domains [24]. The problem with these algorithms is that they are
dependent on the initial domain. If the initial domain is not estimated correctly and
does not have the optimal solution, the algorithm will not obtain the correct solution,
as ants cannot leave the domain. In real-world problems, where it is not always possible
to precisely define the search space, with its set of restrictions, these algorithms may
not solve the problem in the most appropriate manner. Chen et al. [24] propose a
broad-range search algorithm, which is able to find the optimal solution, even if the ini-
tial domains provided do not contain the optimal values. Robust Ant Colony
Optimization for continuous functions (RACO) uses the grid method to discretize con-
tinuous variables and applies self-adaptive strategies for domain adjustment, phero-
mone increment, domain division, and ant size, to enable the search to be successfully
executed. This method is used successfully in cases where the initial domain has the
optimal values for solving the problem, and in cases in which it does not.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 5 of 40

The objective of the proposed article is to contribute to the improvement of the re-
sults of the application of the ACO in problems of continuous optimization, through
the presentation of a new broad-range search algorithm, derived from RACO, called
the Accelerated and Robust Algorithm for Ant Colony Optimization in Continuous
Functions (ARACO). ARACO uses adaptive parameters related to domain adjustment.
The acceleration of these parameters, in opportune moments, leads the domain that
contains the optimal solution to be found more quickly, as well as allows, within the
correct domain, ants to converge to the optimal solution more quickly. In this case,
ARACO allows the optimal values for the variables to be found in a lower number of
function evaluations, when compared to the other algorithms.

With the acceleration of the adaptive domain adjustment parameters, it is possible that
the domain values have become stagnant in a region, which makes the best solution found
to be a local minimum. In this case, ARACO allows the domain of the variables to be
gradually increased around the best solution found so far, allowing the determination of a
new domain that is outside the region where the optimal location is found. In this case,
ARACO is able to reach regions of the domain that are not reached by its predecessor
RACO, thus allowing the optimal values to be achieved with a higher success rate.

This article is organized as follows. In the second section, the main features of
ARACO will be introduced and a step-by-step guide to the algorithm will be shown. In
the third section, ARACO’s experimental results will be presented. These results will be
compared with the results of other methods based on ant colony optimization in con-
tinuous functions and with methods that use other principles for optimization. Finally,
in the fourth section, conclusions about the research and future work that can be exe-
cuted will be presented.

ARACO

In order to present the proposed metaheuristic, this section will define the problem
that will be addressed by the article, in addition to the main features and steps taken by
ARACO in the search for the optimal solution.

Problem definition

The proposed algorithm aims at solving problems of continuous optimization, locating
the optimal solution, regardless of the domain provided. A continuous optimization
problem can be formally defined with the following model: P = (X, Q, f) [24], where X
is a solution vector with n continuous variables x; (i = 1, 2, ..., n), Q is a set of restric-
tions that must be met by the variables, and f is the objective function to be optimized.
In the case of a minimization problem, the objective is to find the value of X*, which
minimizes the function: f(X*) < f(X), VX € S. If this is a maximization problem, the ob-
jective is to find the value of X*, which maximizes the function: f(X*) > f(X), VX € §,
with S representing the initial domain from where the search for the value of X will be
carried out.

Discretization of variables
The ARACO algorithm uses the grid method for the discretization of variables.
Through it, the defined continuous domain is converted into a discrete domain. This

de Freitas and Yamanaka Journal of the Brazilian Computer Society

(2021) 27:16

process happens at each iteration of the algorithm, as each iteration defines a new con-
tinuous domain for X. By definition, X is a vector of solutions with # dimensions with
continuous variables x; (i = 1, 2, ..., n).

i

In the adopted process, a continuous domain (x',;, , x.) will be determined for each

i
min

iteration, where «' . represents the lowest domain value for variable x, in dimension i,

while xf

+ax represents the highest value of the domain for variable x, in dimension i.

The algorithm will seek the solution of the problem within this domain. A variable & is
used for discretization. The initial domain will be divided into k + 1 parts for each of
the # variables.

At this moment, the domain will be divided into k + 1 discrete values. The discrete
values of the domain can be represented by a matrix of n x (k + 1) dimensions, as
shown in Fig. 1, where n represents the number of variables in the problem. The Eq.

(1) is used to calculate the value of each element of the matrix.

hi= (& —hin) /K (1)

where i represents each variable of the problem, varying between 1 and #.

Building a new solution
The main role of ants in ARACO is the construction of new solutions. Each ant will
store a possible solution, that is, a value for each variable of the optimization problem.
To build a new solution, the ants will initially take several random routes to distribute
the initial pheromone, which will be used as a basis to guide the construction of the so-
lutions together with the heuristic value of the function that will be optimized. In this
process, each ant randomly selects, for each variable, a value from the possible discrete
values that were obtained through the grid method. After this step, the random solu-
tions created will have their heuristic value calculated, according to the function that
will be minimized or maximized. The random routes created are ordered, according to
their heuristic value, and only the best solutions created will have their pheromone
distributed.

To distribute the pheromones, a matrix, called 7, will be used. This matrix has n x (k
+ 1) dimensions. The pheromone values of the best solutions are deposited in the
pheromone matrix, according to (2).

Ty =15+ Q/f (2)

where 7; represents the pheromone value in variable i, at point j, mapped according
to the discretization of the variables; f represents the heuristic value of the solution;

1 1 1 * 1 *
Xmin Xmin+hl Xmin_i_2 hl Xmin+k hl
2 2 2 * 2 *
min Xmin+h2 Xmin-l_2 h2 Xmin-}_k h2
n n n * n *
Xmin Xmin"_hn Xmin-l_2 hn Xmin-l_k hn
Fig. 1 Domain discrete value matrix

Page 6 of 40

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 7 of 40

and Q represents the adaptive pheromone increment, which will be described later, but
which is calculated by (3).

Q= IOOMmin+1 (3)

where OM,,,;, represents the order of magnitude, that is, the exponent value of the
best solution found for the function.

When the pheromone of the best randomly generated solutions is deposited in the
matrix, ARACO will go to a new stage. From that moment, new ants will be generated
and they will choose their routes, using a probability calculation among the available
routes, represented by (4).

k41
by = TLY'/Zi:l Tij (4)

where p;; represents the probability that, in variable i, point j will be selected as the
route for the new ant. It is important to highlight that, based on the previous equations,
the probability of a value being selected as a solution for a new ant is calculated using
information related to the heuristic value and the amount of pheromone that the route
has, in the same way adopted in the basic concepts of ACO. Thus, solutions that have
a lower heuristic value and a higher amount of pheromone are more likely to be se-
lected as a route for new ants.

After the ants create all new routes, the pheromone evaporation process will occur.
This process prevents the pheromone from accumulating in only a few points, making
it difficult to diversify solutions. The new pheromone value at each point will be given
by (5).

T?jew = (l—p)*z';ld (5)

where p represents the evaporation rate and its value must be determined by a num-
ber between 0 and 1. In the ARACO algorithm, the recommended value for p is 0.5.
This value was determined empirically, that is, exhaustive tests were performed to de-
termine the value that produced the best results.

After evaporation, the best route among the created routes will have its pheromone
reinforced in the pheromone matrix. The process of building new solutions will be re-
peated, until the number of ants determined by variable m creates their routes, so that
the solutions are evaluated again and the pheromone of the best route is reinforced
again. The number of times this process is repeated is determined by the variable nc_
max.

Adaptive domain adjustment
The adaptive domain adjustment strategy allows the optimal solution to be found, even
if the initial assigned domain does not contain the optimal values. To this end, the do-
main must be adjusted automatically for each iteration. The domain adjustment
process is performed by analyzing the r pheromone matrix. Each line i of the matrix 7
represents the pheromones distributed in a variable i, which has the values mapped in
the matrix in Fig. 1.

It can be said that if the pheromone is concentrated near the center of the domain,
there is a greater possibility that the ideal solution is located within the domain. On the

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 8 of 40

other hand, if the pheromone is concentrated near the ends of the domain, there is a
greater possibility that the ideal solution is located outside the domain. This analysis
and adjustment is executed variable by variable, since it is possible that for one variable
the solution is outside the domain and for another variable the solution is within the
domain.

To decide how the adjustment will be made, the algorithm uses the variable 6 that
represents the percentage of (k+1) positions, which will determine if the best solution is
inside or outside the current domain. It also uses the variable r;, which represents
which position, between 0 and (k+1), has the highest concentration of pheromone.
Using these two variables, in an example where the variable 6 has a value of 0.2, that is,
if 7; is located in the first or last 20% of (k+1) positions, the ideal solution tends to be
located outside the domain. The recommended value for the variable 6 is between 0.1
and 0.3. This range of values was defined in this way, as it is the range determined in
the RACO algorithm. The values of the parameters that exist in the two algorithms are
the same, in order to be able to better evaluate the new features implemented in
ARACO. Thus, if r; < 0 * (k+1) or r; > (I -) * (k+1), the adaptive adjustment of the
domain must be executed to move and expand the current domain, to find a domain
that includes the ideal solution.
i

In this case, the new values ' . and xinax of the variable i in the domain must be de-

termined considering r; as the center of the new domain, as in Eqgs. (6-7).
i .. (k)
Koy = Ti—) + Ay) *h; (6)
i k)
Koo =Ti + ot INREY/? (7)

where the parameter A; must be small, in order that the new domain does not be-
come much bigger than the old domain. In the ARACO algorithm, the recommended
value is 1.25, but it is important to highlight that the value is changed dynamically to
speed up the solution conversion process, as shown in item 2.8 of the article. This ini-
tial value was defined in this way, as it is the value used in the RACO algorithm.

The inverse situation, when the ideal solution tends to be located within the current
domain, is represented when 6 * (k+1) < r; < (1-6) * (k+1). In this scenario, the current
domain must be reduced in order to execute a more detailed search.

In this case, the new values x’ ; and x'__ of the variable i in the domain must be de-
termined following the Egs. (8-9).

min xim'n + (xinax _xinin) >‘<A2 (8)

x =i (xi xl)*Ao)

max max~ \Vmax"min

where the parameter A, determines the percentage of domain reduction, its value
should not be too large so that the domain is not reduced enough to produce a condi-
tion where the ideal solution is no longer within it. For each iteration that uses this ad-
justment, the new domain will be 2 * A, smaller than the old domain. In the ARACO
algorithm, the recommended value is 0.05, but it is important to highlight that the
value is changed dynamically to speed up the solution conversion process, as shown in
item 2.8 of the article. This initial value was defined in this way, as it is the value used
in the RACO algorithm.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 9 of 40

There is another mechanism for speeding up the process in situations where the ideal
solution is outside the current domain. In this situation, case r; < 8 * (k+1), that is, the

i
min’?

domain displacement was executed in the direction of the value of x the value of

i

i . will be preserved and the value of x, , will be changed according to (10).

xi‘nax = xﬁnax_ (xi'nax _xinin) *Az (10)

On the other hand, if ; > (1-0) * (k + 1), that is, the domain displacement was exe-

the value of x/,

cuted in the direction of the value of ! "

ax will be preserved and the

value of x!

min

will be changed according to (11).
xf‘nin = xinin + (x:'nax _xfnin) *A3 (11)
where parameter A3 determines the percentage that the domain will be reduced, at
its lower or upper limit, depending on the value r;. In the ARACO algorithm, the rec-
ommended value is 2 * A,, that is, 0.1, but it is important to highlight that the value is
changed dynamically to speed up the solution conversion process, as shown in item 2.8
of the article. This initial value was defined in this way, as it is the value used in the
RACO algorithm.

Adaptive pheronome increment

To calculate the values of the r pheromone matrix, the heuristic value of the solution
() and the value of the variable Q are used. The value of the variable Q cannot remain
constant throughout the execution of the algorithm, because as the algorithm interac-
tions are executed, the value of fis changed, since better solutions are found and the
domain is changed. With the value of f being altered at each iteration and, as 7;; = Q /
f, the values of Q and f could become very disproportionate, causing the pheromone
matrix to possess similar values, making it impossible for the algorithm to converge. It
is important to note that the problem of the pheromone matrix having only similar
values could not be avoided if was set for Q a very low value or very high, as in any
case, the variation in the value of f would cause the values to become similar at some
moment.

The solution found was to define the pheromone increment of the r;; matrix through
an adaptive strategy, making the variable Q as different as possible at each iteration, as
the domain is changed. This value must always be proportional to the heuristic value of
the best randomly generated solution, at the beginning of each iteration, therefore Q
= 1091 The creation of random routes at the beginning of each iteration allows
for an initial pheromone to exist before ants build their routes. This initial pheromone
will cause the routes to be determined by the ants in a non-random manner, as they
will be directed by the initial pheromone, causing the convergence of the algorithm to
be increased.

Adaptive domain division

One of the main characteristics of ARACO is to be able to find the best solution, even
if it is not contained in the initial domain provided. This is only possible because an ad-
justment is made in the domain at each iteration, using among other parameters the
variable k, which also directly influences the domain discretization process. At each

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 10 of 40

iteration, the domain is changed and discretized. If the value of k is very low over the
entire algorithm, the domain will be converted into a few discrete points, which may
not be able to direct the ants to the ideal solution of the problem, as it is not close to
an optimal region. On the other hand, if the value of k is very high over the whole algo-
rithm, the domain will be converted into many discrete points, which may have similar
heuristic values, making it slow to find the most promising region among those
available.

The fact is that the degree of precision of the domain discretization depends on the
variable k, which will have its value defined through an adaptive method in ARACO. At
the beginning of the execution, kK may have a lower value, so that the algorithm can
quickly converge to a promising area. However, at some point, the value of k will limit
the algorithm, causing it not to find better solutions with each iteration. The value of k
must then be increased by one, so that the accuracy of the search is increased and the
algorithm can find solutions that were not possible with the previous value of k. The
recommended initial value for variable k is 11. This initial value was defined in this
way, as it is the value used in the RACO algorithm.

Adaptive number of ants

Another condition that influences the success of the algorithm is the number of ants
that will execute the search at each iteration. The number of ants depends directly on
the discretization process of the domain, because if the continuous domain is converted
into a few points, few ants will be able to find the most promising region to search.
However, if the domain is converted at many points, many ants will be needed to find
the best solutions.

Thus, the number of ants used must also be an adaptive parameter, because when
the domain is converted into a few points, that is, kK has a low value, the m number of
ants is also low. As the value of k increases, due to the need for greater precision in the
search for the best solutions, the number of ants should also increase. The Eq. (12) de-
termines the number of ants.

m=k+ Ay, (12)

where the parameter 4,, represents how much m must be greater than &, to enable
ants to find the best solutions, without spending a lot of time searching. The recom-
mended value for 4,, is 2. This initial value was defined in this way, as it is the value
used in the RACO algorithm.

Acceleration of adaptive domain adjustment parameters

In order to speed up the convergence process of the ARACO algorithm for the best so-
lution, adaptive values are used for the parameters A; A, and Ajz, responsible for
adjusting the domain at each iteration. The parameters are adjusted under certain situ-
ations to accelerate the algorithm, but then return to their initial values when this ac-
celeration is no longer recommended.

If the optimal solution is located near to the center of the current domain, it is neces-
sary that the domain be reduced, using (8-9), so that a more detailed search is exe-
cuted. The parameter responsible for determining how much the domain will be
reduced is A, and its initial value is 0.05. ARACO verifies whether the point with the

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 11 of 40

highest concentration of pheromones is located in the central position of the current
domain or in the position before or after the center, in other words, whether r; = (k+1)
/2orr;=(kt1)/2)-1orr;=(k+tl)/2) + 1 In these cases, parameter A, will in-
crease by 0.05, as the ideal solution tends to be located near to the center of the do-
main; thus, it is possible to ignore some values located at the edges of the domain,
while reducing the domain at a faster speed, so that ants can find the best solution in
less iterations. In other cases, where the ideal solution tends to be within the domain,
but not near to the center, parameter A, will increase by 0.005. The acceleration of par-
ameter A, has a limit and this must be executed until it reaches a maximum value of
0.15. Noteworthy here is that, when the point with the highest concentration of phero-
mones is not located within the domain, A, returns to its initial value.

If the ideal solution is located outside the current domain, it is necessary that the do-
main be moved and expanded, using (6-7), so that the correct domain is found. The
parameter responsible for determining how much the domain will be displaced and ex-
panded is A;, where its initial value is 1.25. ARACO verifies whether the point with the
highest concentration of pheromones is located on the lower or upper edge of the do-
main, in other words, whether r; = I or r; = (k + 1). In these cases, the parameter 4,
will be increased by 0.25, because as the ideal solution tends to be far from the edge of
the domain, a more significant displacement and increase can be performed, so that the
correct domain can be located more quickly. In other cases, where the ideal solution
tends to be outside the domain, but not so far from the edge, parameter A; will in-
crease by 0.025. The acceleration of parameter A; has a limit and must be executed
until it reaches a maximum value of 1.75. Emphasis is here placed on the fact that
when the point with the highest concentration of pheromones is no longer located out-
side the domain, A; returns to its initial value.

These increment values for the variables A; and A, were determined empirically, that
is, exhaustive tests were performed to determine the values that produced the best
results.

The parameter A; is also dynamically adjusted, but its variation depends directly on
the adjustment of A,, as previously stated Az = 2 * A».

Expansion of the domain around the best solution

In some cases, the acceleration of the parameters A;, A, and Az can cause the algo-
rithm to converge to a region with a local minimum and cannot get out. For such a
situation of stagnation of the algorithm, ARACO has a domain adjustment strategy,
which causes a new domain to be defined around the best solution found so far. This
adjustment is executed when there are 30 iterations of the algorithm without an im-
provement of at least 10% in the heuristic value of the best solution found. A new do-
main will be determined for only one of the variables, so that this expansion can
happen gradually. The choice of the variable that will have its domain changed is de-
fined through a test, which locates the variable that would proportionally have less vari-
ation with the extension of the domain. This variable tends to be more stagnant than
the others. The Egs. (13—14) determine the value of the new domain.

xl = besti—k/z*Al*Hi*ei (13)

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 12 of 40

xl = best' + k/z*Al*Hi*ei (14)

where best’ represents the value of the best solution found so far, H; represents the
value of /; when the best solution was found and the parameter e’ represents to which
degree the new domain needs to expand in order to leave the local minimum region.

The parameter €', for each variable i, is initialized with 1. Whenever 30 iterations are
performed and the best solution remains stagnant, it will have its value doubled to the
variable that had its domain changed. When the best solution leaves the local minimum
region, that is, when a new solution is found that is at least 10% better than the best so-
lution found, the parameter returns to 1, for all variables i. In this case, there is the
guarantee that the new domain generated will gradually increase around the best solu-
tion found, allowing new values to be located outside regions of local minimum.

The value of the parameters responsible for detecting and treating stagnation were
determined empirically, that is, exhaustive tests were carried out to determine the
values that produced the best results.

As previously mentioned, the H; parameter represents the value of /; when the best
solution was found. However, for the new domain not to become so small that it is ne-
cessary to execute this extension several times, which would impair the performance of
the algorithm, or so large that it is not possible to find a best solution in just 30 itera-
tions, the value of the H; parameter must be within the range 0.1 < H; < 1. Also noted
here is that, after the domain expansion process around the best solution found, it is
necessary to reset A;, A, and A3, to the initial values.

The steps of the ARACO algorithm

After detailing the main features of ARACO, this topic presents the structure of the al-
gorithm. First, a step-by-step will be shown, describing in detail all the actions per-
formed by the algorithm, from the assignment of the initial parameters, until the
completion of the algorithm, when the termination condition is reached. Following this,
a flowchart is presented that represents the sequence and the interaction between the
actions of the algorithm.

Step by step

In this section, the main steps followed by the algorithm to find the optimal solution
are shown and explicated. One of the main improvements generated by the ARACO al-
gorithm is related to obtaining a better performance, with the execution of step 17.
Through this step, the algorithm is able to find the optimal value in a smaller number
of iterations compared to other algorithms, thanks to the acceleration of the respon-
sible parameters by adjusting the domain at appropriate times. Another improvement
is related to achieving greater reliability, with the execution of step 18. Through this
step, the algorithm is able to find the optimal value in practically all the performed exe-
cutions, by applying the process that treats algorithm stagnation. This process expands
the domain around the best solution found so far, through preventing the algorithm
from getting stuck in a region of local minimum. This occurs regardless of whether the
initial domain provided contains or not the optimal solution, allowing the algorithm to

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 13 of 40

find the solution using fewer function evaluations than the other algorithms cited in
the article, as will be shown in item 3. All steps for the algorithm are listed below:

Step 1—Initialize the values of all variables, such as &, 6, p, nc_max, A,,, A}, A,, As,
Fpun t, and the number of iterations without improvement. In addition to the value of

xt . and &

 in s Which represent the initial domain for each variable, i.e., the minimum

and maximum value of the dimensions of the domain and the termination condition
of the algorithm.

Step 2—Divide the initial domain into k equal points for each variable, according to
(1). At that moment, the process of discretization over the variables occurs using the
grid method, in which the continuous domain provided is converted into a discrete
domain. This process is important because the rest of the algorithm will work with the
discretized domain. The result is shown in Fig. 1.

Step 3—Initialize the r pheromone matrix, which represents the amount of
pheromone stored at each point in the domain discrete value matrix. In addition,
initialize the adaptive number of ants 7, which has a dynamic value, due to the fact
that when the domain is divided into a few discrete points, the small number of ants
are sufficient to perform the search. However, when the domain is divided into many
discrete points, will be necessary too many ants to perform the search. Similarly,
initialize the variable f,,,;,, which stores the heuristic value of the best solution found in
the current iteration, and the variable nc, which controls the number of times that
ants will generate new routes in each iteration.

Step 4—Generate some possible random solutions.

Step 5—Calculate the heuristic value of the random solutions created, according to the
function that will be minimized or maximized by the algorithm. Sort the solutions
according to the heuristic value.

Step 6—Calculate the value of the adaptive increment Q of the pheromone in this
iteration, according to (3), so that the value of Q remains proportional to the heuristic
value of the solutions found in the current solution, thus maintaining a proportional
pheromone distribution in the 7 pheromone matrix. Distribute the initial pheromone
over the best solutions created, to supply the 7 pheromone matrix with some initial
information, and as such guide the first ants towards more attractive solutions, thus
accelerating the algorithm conversion process.

Step 7—Create new routes for ants using the roulette wheel method by use of (4).
Each ant creates its new route, variable by variable, performing a probabilistic
calculation, which considers the pheromone existing at each point in the pheromone
matrix. As the calculation of the amount of pheromone uses the heuristic value of the
solutions, it can be said that the same criteria defined in the initial concept of ACO
are used.

Step 8—Evaluate the solutions generated in this nc iteration, according to the function
that will be minimized or maximized by the algorithm. The objective of this step is to
find and store the best solution, among the solutions created in this iteration.

Step 9—Execute the pheromone evaporation process, according to (5). This process
ensures that paths that have less pheromone become less and less attractive, until they

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 14 of 40

are no longer covered. While the paths that have more pheromone are able to guide
ants in the search for better solutions.

Step 10—Increase the pheromone at all points of the best solution found in this
iteration, using (2), so that the pheromone matrix always has a greater amount of
pheromone on the paths that are more attractive.

Step 11—Update the value of f,,,;, to the value of the best solution found in the nc
current route, if this value is less than f,,,;,, the f,,;,, must store the heuristic value of
the best solution found in the current iteration.

Step 12—Increase the value of nc. If nc <= nc_max, go back to step 7, as the number
of routes necessary for the domain adjustment was not generated. Otherwise, this is, if
nc > nc_max, proceed to step 13.

Step 13—Check if the best solution found in this iteration (f,,;,) is the best global
solution found (Fazn). If so, go to step 14. Otherwise, jump to step 15.

Step 14—Store the value of the new global best solution in the variable Fy;; and
verify if the new solution is 10% better than the previous one to define if the algorithm
is stagnant and reset the H; value. Knowledge of when the algorithm is stagnant is
important, as it allows for the subsequent execution of a strategy to deal with this state
of stagnation, allowing the algorithm to leave the local minimum region and continue
on to find better solutions. To this end, it is necessary to store the value of H,, at the
moment when a new value of F,y is found.

Step 15—Increase the variable that controls the amount of iterations without
improvement to detect the stagnation of the algorithm and also the variable ¢. The
variable ¢ will increment k, responsible for the adaptive domain division, when the
value of ¢ is 15. The variable k is an adaptive parameter, which needs to have a small
initial value, so that the algorithm can locate a promising region, but its value is
gradually increased to enable new searches to be carried out with a greater degree of
precision, when better results are not attained.

Step 16—Perform the adaptive domain adjustment process, based on the position of
the r pheromone matrix which has a higher concentration of pheromones. For this, if
the pheromone is concentrated near the edge of the domain, the best solution found
in this iteration tends to be located outside the domain. In this case, to locate a
domain that contains the optimal solution, it is necessary to expand and adjust the
domain using (6-7, 10-11). On the other hand, if the pheromone is concentrated
away from the domain edge, the best solution found in this iteration tends to be
within the domain. In this case, it will be necessary to reduce the domain using (8-9)
to perform the search in the next iteration with a greater degree of precision.

Step 17—Increase the speed of convergence of the algorithm, accelerating the adaptive
domain adjustment parameters, if appropriate. In other words, accelerate the value of
A; when the pheromone is concentrated around the central positions of the domain
and, accelerate the value of A, when the pheromone is concentrated at the upper or
lower edge of the domain. When these opportune situations cease to exist, parameters
A; and A, return to their initial values.

Step 18—Increase the success rate of the algorithm, i.e., the number of executions in
which the algorithm can find the optimum value, through the process of treating the
algorithm stagnation. That is, if the algorithm is stagnant, redefine the domain and

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 15 of 40

gradually expand it around the best solution found so far, using (13—14), allowing the
algorithm to escape from a local minimum region.

Step 19—Check if the termination condition has been reached. If so, go to step 20.
Otherwise, go back to step 2.

Step 20—Finalize the algorithm.

Flowchart

Figure 2 describes the entire process performed during the ARACO algorithm. It is im-
portant to highlight that each action performed in the flowchart below is identified with
a number, which is the step number of the section Step by step to which it
corresponds.

Experimental results

In this section, the efficiency of ARACO will be verified, by performing tests in the
same scenarios as the tests performed by the RACO algorithm, since ARACO is pro-
posed as an algorithm derived from RACO. ARACO will be compared to RACO
throughout this section. At first, the tests were performed in a scenario where the prob-
lem is solved by a limited-range-search algorithm, i.e., the initial domain provided con-
tains the ideal solution for the function. Tests were also performed in a scenario where
the problem is solved by a broad-range search algorithm, i.e., the initial domain pro-
vided does not contain the ideal solution. After these initial tests, new tests were per-
formed using the benchmark functions used in the IEEE Congress of Evolutionary
Computation Benchmark Test Functions (CEC 2019 100-Digit Challenge). In both sce-
narios tested, the values of the main ARACO parameters are k = 11, 8 = 0.2, p = 0.5,
nc_max = 50, 4,, =2, A; = 1.25, A, = 0.05, A3 = 0.1. The parameter values were defined
in this way, as these are the values used in the RACO algorithm, and since the ARACO
algorithm was compared in all scenarios with the RACO algorithm, it is necessary that
the initial parameters of the two have the same values, so that the comparison is fairer.
Noted here is that the values of k, A;, A, e A3 are changed during the execution of the
algorithm, so the assigned values are only the initial values. Another parameter of inter-
est here is that 100 random routes are generated at each beginning of the algorithm it-
eration and the 30 routes that generate the lowest heuristic value for the function that
will be optimized will deposit their pheromone in the 7 matrix. This provides the algo-
rithm with the initial information needed to find solutions. Another important factor is
that the algorithm is considered stagnant, and therefore, the domain adjustment strat-
egy is executed around the best solution found, when 30 iterations are executed with-
out finding a solution that has a heuristic value, which is at least 10% less than the
heuristic value of the best solution found so far. The value of the parameters respon-
sible for detecting and treating stagnation were determined empirically, that is, exhaust-
ive tests were carried out to determine the values that produced the best results.

All comparisons between the algorithms are based on the number of function evalua-
tions performed until the termination condition is reached. Noteworthy here is this was
the criterion chosen, due to the other algorithms cited in the article also using this cri-
terion. Thus, it becomes possible to compare ARACO to these, as they use the same
termination condition. ARACO considers a function evaluation when the process of

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 16 of 40

1 - Initialize the parameters

I~

2 - Divide the initial domain into & equal parts
for each variable

3 - Initialize the Tau pheromone matrix, the
self-adaptative variable m, f,.;, and nc

v

4 - Generate some random solutions

v

5 - Calculate the heuristic value and order the
random solutions

6 - Calculate the Q value and distribute the
pheromone among the best solutions created

1~

7 - Create new routes for ants

8 - Find the best solution among the generated
routes

v

9 - Execute the pheromone evaporation process

10 - Increase the pheromone at the points of the
best solution found

v

11 - Update the f,,:,, if necessary

v

12 - nc <nc_max

15 - Increment ¢ and the
number of iterations
without improvement
if finin > Fu, t times,
k=k+1

14 - Reset Fyy, verify if the algorithm is
stagnant and reset H;

1~

e 4
16 - Execute self-adaptive domain adjustment

17 - Acelerate self-adaptive domain adjustment
parameters, if recommended

18 - Extend the domain around the best solution
found, in case the algorithm is stagnant

19 - Termination
condition?

20 - Finalize the algorithm

Fig. 2 ARACO's flowchart

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 17 of 40

adaptive adjustment of the domain is carried out, which refers to step 16 of the flow-
chart presented in the section “Step by step”.

In all tests performed, the programming language used was MATLAB, in version
R2016A. The equipment used for the tests was a notebook, with an AMD A10-4600M
Quad-core processor with a clock speed of 2.3GHz, and 8GB of DDR3L RAM, with the
Windows 10 - 64-bit operating system.

Tests where the initial domain contains the optimal solution

The results obtained in the ARACO algorithm were compared with the results found
in the ACOy algorithm [19] and with the methods it cites, in addition to the results
found by the RACO algorithm [24], which was the reference used for the creation of
ARACO.

As in Socha and Dorigo [19], the comparisons are divided into three groups:
probability-learning methods that model and sample probability distributions, meta-
heuristics developed for combinatorial optimization and adapted to continuous do-
mains, and methods inspired on the behavior of ants. In the three groups of
comparisons, the comparison with ACOg and RACO will be added.

For an impartial comparison between the algorithms, the established criterion was
the number of function evaluations performed, instead of the execution time or other
measures that may be related to the performance of the equipment or the program-

ming language used.

Probability-learning methods that model and sample probability distributions
The methods for comparison in this section are three versions of evolutionary strat-
egies: (1+1) ES (Evolution Strategy with 1/5th-Success-Rule), CSA-ES (Evolution Strat-
egy with Cumulative Step Size Adaptation), CMA-ES (Evolution Strategy with
Covariance Matrix Adaptation), IDEA (Iterated Density Estimation Evolutionary Algo-
rithm), and MBOA (Mixed Bayesian Optimization Algorithm). The population size
used in the above algorithms is chosen for each algorithm-problem pair [30]. The smal-
lest population is selected from the set p € [10, 20, 50, 100, 200, 400, 800, 1600, 3200].
ACOg parameters are m (number of ants) = 2, n (speed of convergence) = 0.85, g (lo-
cality of the search process) = 107% and k (archive size) = 50. The RACO parameters
are the same as ARACO.

Each benchmark function was run 20 times and the comparison criterion used in this
section is the median number of function evaluations (MNFE) executed until the ter-

mination condition was reached. The Eq. (15) determines the termination condition.
If -f+ <e (15)

where fis the best heuristic value found by ARACO, f* is the optimal value found in
the literature for the benchmark function, and € is 107 '°.

Table 1 shows the benchmark functions used in this scenario. All have 10 dimen-
sions. The Function column shows the name of the benchmark function. The Formula
column shows the formula used to calculate the value of the function that will be mini-
mized or maximized. The Optimal column shows the ideal value for each variable of
the function. The Minimum column shows the minimum value of the function, when
the optimal values for each of the variables are found

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 18 of 40

Table 1 First part of benchmark functions

Function Formula Optimal x* Minimum f(x*)
Sphere () = Xn:xfz = 0,...,0) frnin =0

i=1
Ellipsoid F(7) = i (1005%')2 = ,...,0) fnin=0

i=1
Cigar f(7):xwz+104ix,-2 ?:(O,...,O) finin =0

i=2

Tablet f(?):104x12+ix,2 X =(0,...,0) frnin =0
Rosenbrock -1 h = (a,..,1) frnin=0

F(X) = 31100067 x11)’ + (-1)7)

i

The results used to compare ACOg, (1 + 1) ES, CSA-ES, CMA-ES, IDEA, and MBOA
were obtained from Dorigo et al. [19], whereas the results used for comparison with
RACO were obtained from Chen et al. [24]. Table 2 shows the median number of func-
tion evaluations (MNFE) necessary for each method to find the termination condition.
The median is shown in parentheses, after 1.0, only for the algorithm that has the best
result for a function, the other medians can be calculated proportionally based on the
value shown in the table. For example, if an algorithm has its median shown with 1.0
(86), it means that it is the algorithm that has the best median and the value of this me-
dian is 86. On the other hand, if an algorithm that does not have the best result, its me-
dian is shown in the table as 1.8, that is to say that the median is 1.8 multiplied by the
best result found for that function. Some methods failed to find the optimal value in all
runs for the Rosenbrock function. These cases were represented in the table with an *.
Worthy of mention here is that in four out of the five functions, ARACO is able to
optimize the functions with less than half the number of function evaluations of the
second best algorithm. If the performance is compared with the other algorithms, the
difference becomes even more impressive, being more than 90% higher. The superiority
of ARACO in this scenario was obtained thanks to the acceleration of the adaptive do-
main adjustment parameters A, A, and As, at opportune moments, since the tests
showed that there was no stagnation of the algorithm. With the acceleration of these
parameters, it is possible to reach a small domain faster, which guarantees not only
finding the optimal solution, but also a greater precision compared to RACO.

Figure 3 shows a comparison between the two algorithms that have the best results,
in relation to MNFE, for the benchmark functions in Table 2.

Table 2 Comparison of results of ARACO, RACO, ACOg, and probability-learning methods that
model and sample probability distributions

Function ARACO RACO ACOg (1+1)ES CSA-ES CMA-ES IDEA MBOA
Sphere X[-3,71", n = 10 1.0 (86) 2.23 1752 1593 2548 20.70 79.65 764.65
Ellipsoid X:[=3,71", n = 10 1.0(103) 211 11233 285145 475242 4320 69.12 604.85
Cigar X{[-3,71",n =10 10 (1145) 205 4695 2045764 2682969 3353 15427 40244
Tablet X:[-3,7]", n = 10 0 (89) 228 2884 132676 187477 4903 83.64 692.22

Rosenbrock X":[-5,5]", n =10 *1.0(997) 1.25 ¥793 *367.79 129809 7.21 *1514.44 *7932.79

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 19 of 40

EARACO ®RACO

1400
1200
1000
800
600

400

MNFE (Iterations)

i =
o . I . . o - .
Sphere Ellipsoid Cigar Tablet Rosenbrock

Benchmark functions
Fig. 3 Comparison of results of ARACO and RACO
.

Metaheuristics developed for combinatorial optimization and adapted to continuous
domains
The metaheuristics used for comparison in this scenario is CGA (Continuous Genetic
Algorithm), ECTS (Enhanced Continuous Tabu Search), ESA (Enhanced Simulated An-
nealing), and DE (Differential Evolution). The parameters for the aforementioned algo-
rithms are essentially chosen through a trial-and-error procedure [19]. The results used
for comparison of ACOg, CGA, ECTS, ESA, and DE were obtained from Dorigo et al.
[19], whereas the results used to compare RACO were obtained from Chen et al. [24].
The benchmark functions used in this scenario are shown in Table 3 below, except
for the Rosenbrock function, previously shown in Table 1. The Function column shows
the name of the benchmark function. The Formula column shows the formula used to
calculate the value of the function that will be minimized or maximized. The Optimal
column shows the ideal value for each variable of the function. The Minimum column
shows the minimum value of the function, when the optimal values for each of the var-
iables are found. The ARACO algorithm was run 100 times for each benchmark func-
tion and the comparison criteria used in this section are the average number of
function evaluations (ANFE) executed until the termination condition was reached, in
addition to the success rate. The Eq. (16) determines the termination condition.

If - f*| < erxfx + & (16)

where fis the best heuristic value found by ARACO, f* is the optimal value found in
the literature for the benchmark function, and €; = &, = 107,

Table 4 shows the average number of function evaluations (ANFE) necessary for each
method to find the termination condition. The average is shown in parentheses only
for the algorithm that has the best result for a function; the other averages can be cal-
culated proportionally based on the value shown in the table. When there is no value
shown on the table for a determined algorithm, it means that the result for that bench-
mark function was not available. In relation to ANFE, ARACO obtains better results in

Page 20 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

vx
POES 0L = (5 W| "o = 1=
. _ uw * y >
62070L— = b (o+ (=" == (x)) ‘
zeslol—= My b= lx - T 0L 2's = **5) |9%ays
8¢88'0 €¥/S0 (¢8O0
[¥5S°0 €80 160L°0| _ Id
0/¥/L°0 /8EV'O 66970
€/9C°0 0/L11'0 689¢0
e
0E| _
'l
0l
0'se 00l 10
00 00L 0¢|_ Ip
0'ge 00L 10
00e 00L O0¢
G680 = X 1=/ 1=/
5550 =, C(a-r)ip " =)dxe b == (x)
8798'c — =y L0 =% ¢ M M - (V¥H) uuewer
0=ty (0‘0‘0) = X X4 = (X)) Buor aq
1=/ L=/ 1=/
ey — (50")+ (g0)+ X = ()4
0= Uy (0 0) = el v u z u U AOJRYNRZ
¢ = Uy (1-‘0) = X [(;2xze + txxoe=Txgy + XL + xze—81) (Pxe—'x2) + 0E][(x'x9 + DxpL—, xe + X 1—61) (L + X +) + 1] = (x)y 3014 pue ulR1sp|on
|- =y (u'u) = & (((u=20) + (u=1x))=)dxe (2x)s0D (1X)s0> — = (x) wose3
0=ty (0°0) = & £0+ (Wxuy)s0d 470—(xisg)s0d €°0—,xC + ,1x = (x)/ 79
ug u 1y
—=-Dol+ (- + -0 = (X))
/88/6€°0 =44 swnwindo ¢ L ¢ XS XS SODY uluelg
(+X)4 wnwiuIp <X lewndo ejnuwiioy uonouny

SUOIDUNY }IPWYDURQ JO Ued puodas € ajqel

Page 21 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

[
0| _
'l
0l
O¥L 0Ll'0 00L SO0 008 0/l
1590 =% 008 0/ZL 00L 0471 0S¢ 00¢ —1p
LLED =X 0¥l 008 O0L'0 0ZL 00l SO0
MMNNH*N 008 041l 0S¢ 0/L 00¢€ 00l
0= 1=/ 1=/
0510=,% (,("d-r)t " —ydxe 07— = (x))
greee— =" L0T0=,'x ¢ 5 v - (*°H) uuewey
S0
S0
L0
€0
90| _
70
¥'0
0
0
1’0
9¢ 0L 9¢ 0/
0¢ 09 0¢C 09
0L 08 01l 08
0¢e 0§ 0¢ 06§
06 0¢C 06 0¢ —1p
0/ 0¢ 07,2 0¢€
09 09 09 09
08 08 08 08
oL oL 0oL 01l
oy 0¥ 0¥ OF
(+X)4 wnwiuIy «X lewndo e[nw.o4 uonouny

(Panuu0D) sUOHDUNY yIewydUSg JO ed puodss € ajqer

Page 22 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

€
. —)+ (x=Ix)=(x
0= Uy Am mv = w|x NAOﬁ\mx.T _xv NA V F’f Appes 15 uniew
M TT 000 A
o + (Z)soo || - =(x
0="4 (070) = X) E X N (&)t sBueMaLD
18600 160L'0 €¥/S0 ¢e/8°0 8C880 (/¥O¥0
0599°0 /¥0€'0 €88C'0 <CCSE0 LSO 8FECO| _ Iq
1666°0 ¥00L'0 9€/E£0 £L0€8°0 GSELYO 6C€C0
98850 €8¢8'0 ¥CLO0 69550 96910 <clel0
(xX)3 wnwiuIp «X Jewndo ejnw.o4 uonpung
3} |

(Panuu0D) sUOHDUNY yIewydUSg JO ed puodss € ajqer

Page 23 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

LSOy - - - [9%19] 89 (£60) [9%£6] O'L 8/91 0L = U’ [el'STls—) x ybuemaun
- or'e6 LO'ES lgze ¥T'sT (9'87) [9605] O'L [%.6] LE€ 9= U [l0kX ("°H) uuewey

- ¥9'7T6l 8079 S0'8¢ 200 a (€9¢) 0'L G =u'0l's-X (°7) Aoleyez

- S0'6¢ 9Ll 80'CC [%/6] ¥6'€L €81 0L 104 S =u',[0l's-] X (%Y) ypoiquasoy

- [905] 85'€T [9%08] ¥£'81 [9€8] L€l [9%18] Ll (96%) 961 O'L 16T v =u ' [0L'0l X (CV¥S) [Heus

- [9%+5] €0'ST [%08] 2081 [96€8] 6L [%6/] 6751 (6'8Y) [%26] 0'1 cee 0Ll X (47S) 1213uS

- [9%¥5] 61T (%521 2841 [9%9/1 €£°CL [%£G] 5591 (6'L7) [9695] O'L [9%/8] 909 oLk X (5¥S) 19%RYS

- €669 9905 €8€S 99'1€ 8r'C (80l) 0 €=U [I0kX ("FH) uuewyey
€96¢ - - 0419 €96¢ lg'e (ot €=u'lel'szIs-]x buorag
- 6101 85Tl SOy /881 6C1 (GsL) ol 7 =U'|[0l's-I X (%7) noteyez
vE8 601 19 €871 60L So'L ®v/) 0l 7 =Uu'y0l's—T X (%) ¥poiquasoy
- o 85€l 474 L'eC 88C ‘yoi T =U',[T'T-) X DUd pue upispjon

- - - LS6C [9%86] €551 [90/] (L6¥) [%96] O'L ¢ =U",00L'00L-] X wose3

- - - VA4 €78C 60 86l) 0’ z=u’,ool'00l-1x “q

- - 9L€lL e /18y 8 /1) 01 ¢ =" [S1'S—] X SODY ulueig

aa vs3a S103 V9D Y00V oovY 0DVYY uonpuny

sujewop snonupuod 0} padepe pue uopeziundo [eloleUIqUIOD Joj padojRAIP SIIISHNaYeRIBW pue Y00V ‘ODVY ‘ODVYY JO SHNsal Jo uosliedwo) ¢ ajqer

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 24 of 40

nine out of the fifteen functions tested. Moreover, in half of the functions, in which
ARACO obtains the best results from among all the methods, it is able to optimize the
functions with less than half the number of function evaluations of the second best al-
gorithm. If the performance is compared with the other algorithms, the difference be-
comes even more impressive, where it is shown as being more than 90% better.

Emphasis is placed here upon the fact that, in the six functions that ARACO does
not obtain the best results, it is in second place, showing a worse performance only to
RACO. It is possible to improve these results by expanding the area around the lowest
value found, in all variables, instead of expanding only in the most stagnant variable.
However, tests showed that this action results in a lower number of function evalua-
tions, but causes a considerable decrease in the values of another important parameter
shown in Table 4—the success rate. The success rate is important as not all algorithms
find the optimal solution in every execution. However, through the success rate, it is
possible to measure the percentage of executions of the algorithm that find the optimal
solution for each function. The percentage shown in square brackets in the table shows
the success rate of the algorithms. When there is no percentage in square brackets, it
means that all executions were performed with success. In all the proposed functions,
ARACO is able to find the optimal solution with a success rate equal to or higher than
its main competitor, RACO. For example, the RACO success rate for the Hartmann
function (Hg4) is 50% and for the Shekel function (S,5) it is 56%, whereas for ARACO
these values are 97% and 87%, respectively. This superiority in terms of success rate
can be explained by the strategy used to avoid stagnating the algorithm, through the
expansion of the domain around the best solution found. In this way, there is a greater
possibility of a continuous improvement of the values found, instead of the algorithm
being stuck in a region of local minimum, making the success rate of ARACO equal to
or near 100%, for all fifteen functions.

In this way, it can be said that the performance of ARACO is superior to the other al-
gorithms, as it manages to find the optimal value, using a lesser amount of function
evaluations for this. In addition to achieving a higher success rate, that is, it finds the
optimal solution in a higher percentage of executions, when compared to the other
algorithms.

Figure 4 shows a comparison between the two algorithms that have the best results,
in relation to ANFE, for the first 5 benchmark functions in Table 4.

Methods inspired on the behavior of ants

The methods used for comparison in this scenario are CACO (Continuous ACO), API
(after Pachycondyla APIcalis), and CIAC (Continuous Interacting Ant Colony). The pa-
rameters used for the algorithms are the following: for CACO, the ant size m = 10,
number of regions r = 200, mutation probability p; = 0.5, fashion crossover probability
p2 = 1; for API, the ant size m = 20, number of explorations for each ant ¢ = 50, failed
search times Py,.,; = 50; for CIAC, the ant size m = 100, ranges distribution ratio o =
0.5, persistence of pheromonal spots p = 0.1, initial messages number y = 10; for
ACOg, the ant size m = 2, speed of convergence n = 0.85, locality of the search process
g = 107" and archieve size k = 50 [19]. The RACO parameters are the same as
ARACO.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 25 of 40

EARACO ®RACO

Branin RCOS Easom Goldstein and ~ Rosenbrock
Price (R2)

ANFE (Iterations)
N W B 0 & 9 0 O
S O O O O O O O

—_
o O

Benchmark functions
Fig. 4 Comparison of results of ARACO and RACO
.

The results used to compare ACOg, CACO, API, and CIAC were obtained from Dor-
igo et al. [19], whereas the results used for comparison with RACO were obtained from
Chen et al. [24].

The benchmark functions used in this scenario are found on the previously presented
Tables 1 and 4. The ARACO algorithm was run 100 times for each benchmark func-
tion and the comparison criterion used in this section is the average number of func-
tion evaluations (ANFE) executed until the termination condition was reached, in
addition to the success rate. The Eq. (17) determines the termination condition.

If - f*] < erxfr+ e (17)

where fis the best heuristic value found by ARACO, f* is the optimal value found in
the literature for the benchmark function, and €; = €, = 10™.

Table 5 shows the average number of function evaluations (ANFE) necessary for each
method to find the termination condition. As in the previous section, the average is
shown in parentheses only for the algorithm that has the best result for a function; the
other averages can be calculated proportionally based on the value shown in the table.
The percentage shown in square brackets in the table shows the success rate of the al-
gorithms. When there is no percentage in square brackets, it means that all executions
were performed with success. One notes that in relation to ANFE, ARACO obtains bet-
ter or equal results in five of the eight benchmark functions tested. This algorithm
comes in second place in the other three functions. However, in these cases, as well as
in all evaluated functions, the success rate achieved by ARACO is equal to or higher
than all other algorithms, not reaching 100% only in the Shekel function (S45).

The conclusion is therefore reached that ARACO presents a superior performance
over the other algorithms in relation to the average number of function evaluations ne-
cessary to reach the termination condition, and when it does not, it is able to obtain a
higher success rate. This is due to algorithm that attempts to minimize the number of
function evaluations needed to reach the optimal value, with the highest possible suc-

cess rate.

Page 26 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

[9%S] S'128

[9%£5] €791

[9695] (6'/¥) O'L

[96£8] 909

v =u'[0l0] X (°*S) |3eYs

[906] 06'G1T - - [9%.6] 67°€1 (€¥81) Ol 10T § =u'y[0l'ST X (°Y) dpoiquasoy
LE209 - - LE1T 07 g6l 0L z=u’,ool'ool-Tx ‘g

[%07] zL€es - 18 /0L 95'1T ol ©L ot ¢ =u",[0C0¢-] X Appeo pue uniepy
[%95] 88 //€1 - €r9lLe 857C 88C (ot T =U',[C't-]x 9Ud pue uRisplon
[%¢S] 8991 - 8991 [9%19] €€9% [9%/6] (0€) O'L 1991 0L = U’ [Zl'STUs—T x ybuemaus
08'/¥0€ 80619 Leeel 9Ly 98¢ Z9l) 0L 9=u'[tlsTIs-)x aseyds
LYESL SSlel 86'06 9601 S0l 8%/ 0l 7 =Uu'y0l's—T X (%) ¥poiquasoy

oviId Idv (o) 5] Rlon) 0odovY (op) 1)) uonduny

S1UB JO JOIABYSQ 2yl UO palidsul spoyiaul pue ¥0Dy ‘0ODVY ‘0DVYY 4O synsal jo uostedwo)) § ajqel

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 27 of 40

Figure 5 shows a comparison between the two algorithms that have the best results,
in relation to ANFE, for some of the benchmark functions in Table 5.

Tests where the initial domain does not contain the optimal solution

Among all the algorithms cited in the previous section, only RACO has the capacity to
find the ideal solution, given an initial domain that does not contain this solution.
Therefore, all tests performed in this scenario compare only ARACO and RACO, the
only broad-range search algorithms.

For the comparison between the two algorithms, 14 functions are used. Table 6
shows 8 of these functions, whereas the others were presented previously in this article.
The Function column shows the name of the benchmark function. The Formula col-
umn shows the formula used to calculate the value of the function that will be mini-
mized or maximized. The Optimal column shows the ideal value for each variable of
the function. The Minimum column shows the minimum value of the function, when
the optimal values for each of the variables are found. The ARACO algorithm was run
20 times for each benchmark function in each domain provided and the comparison
criteria used in this section are the average number of function evaluations (ANFE)
performed until the termination condition was reached, in addition to the success rate.
The Eq. (18) determines the termination condition.

max (hy, ha, ..., h,) < € (18)

where #; (i =1, 2, ..., n) is the value of each division of the domain grid, given by Eq. 1
and €is 107°.

For the execution of the tests, as performed by Chen et al. [24] in the implementation
of the RACO algorithm, five scenarios are used, which are equivalent to five domains
that do not have the ideal solution. These are:

EARACO mRACO
90
80
—~ 70
S 60
5
5 50
= 40
&
Z 30
< 20
. iR IR i B
0
Rosenbrock Sphere Goldstein and Martin and B2
(R2) Price Gaddy
Benchmark functions
Fig. 5 Comparison of results of ARACO and RACO

Page 28 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

8LYS9LL .
— =y (908581 ‘1£90€" L) = X (64 ©x9)503 G + (1 + 2xG502 4+ (€ + Wxp)50d € + (7 + IX€)50 7 4 (1 + Oxzs02)((§ + X#)s02 § + (4 4 1x€)502 + (€ + x¢)s02 € + (7 + X)50> 7+ (1)503) = (x)/ uasueH
vC0) (e €
oy (bz°0-0)‘(vz'0°0) = K €0+ (Oxup)sod €0 + (xug)sod £0—, X+ ,x = (x)4 Aysasypeyog
97140 '€86800—) €) speg-aue)
0wy (97120~ €8680°0) = X y X PRyt \@;+ T = (X)) duInH-xiS
0= (s0'e) = X XX+ X=6097) + (XX + X=57D) + (XX 4 x=671) = (X)) Sjeag
(l=X)5+1="%
1=
. YAz uis 01 + —A) + + Yw),uis o1 + —A + (Yu),uis = (x
- (i) = ((“Auz us oL + 1) (1="4) + [((1+ M) uis oL + 1) (1="4)] & (HAu), (X4 .
\=!
u
- ((hag)so0 “{ D)@ ~(T0-)de 0t = (X))
0= Uy (0 0) = x oL Aeppy
1=/ 1=/
60€£981 ((ex(1 + 1) +1)s00 .\“WXAC«C +)+s0o 1) =(x))
- =" ewndo g| S S Hagnys
£88£6€°0 .
=y (0‘0) = Il X850 —(1xg1)s00 —,Ix 4) = (x)J uiBLIsey
(%)}
wnwiuipy «X [ewndo e[nwio4 uondunyg

suoldUN }lewyduaq Jo ved pliyl 9 ajqer

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 29 of 40

e Two positives and larges domains x;,,,;1 = 100, %7,,0 = 200, X2,,,5, = 50 and X4, =
80

e Two negatives and larges domains x;,,,;,, = =300, X,,,0x = =180, X5,,,, = —600 and
Xomax = =50

e One positive and one negative domain, far from the ideal solution x;,,,;, = 1800,
Ximax = 1900, X9, = =230 and X4, = —110

e One positive and one negative domain, extremely narrow x;,,;, = 1, X100 = 2, X2yin
= -3 and %y, = -1

e One small and positive domain, and one large and negative domain x;,,,;, = 100,
Ximax = 110, X5, = =300, and x5,,,4, = =190

Table 7 shows the comparison between the results found by ARACO and RACO, re-
garding ANFE and the success rate. It is important to note that, in some scenarios,
RACO cannot find the optimal solution for some functions. These cases are marked
with a — in the table, symbolizing that RACO was unable to find the optimal solution
in any of the twenty executions. This occurs in one proposed domain for the Shubert
function, three proposed domains for the Ackley function, two proposed domains for
the Levy function, and one proposed domain for the Six-Hump Camel-Back function.
This situation does not occur with ARACO and is one of the great advantages observed
in the algorithm, as it is also able to find the optimal solution in all scenarios for all the
benchmark functions tested.

If the comparison is performed according to ANFE, in the first scenario, ARACO is
superior to RACO in 12 of the 14 functions proposed, reaching a result 82% lower than
that provided by RACO, in the Six-Hump Camel-Back function. For the Griewangk
function, in which RACO has superior performance, it is important to highlight that
the success rate of RACO is 70%, whereas ARACO has a 100% success rate, which
demonstrates the advantage of ARACO in finding the optimal solution in all execu-
tions, a fact that as previously stated, represents a great advantage of the algorithm.

Figure 6 shows a comparison between the RACO and ARACO algorithms in the first
proposed scenario, in relation to ANFE, in some of the benchmark functions in table 7.

The second proposed scenario presents similar results in relation to ANFE, with
ARACO surpassing RACO in 12 of the 14 proposed functions, reaching a result 79%
lower than that provided by RACO, in the Bohachevsky function. For the Griewangk
function, where RACO shows superior performance, the RACO’s success rate is 80%,
whereas ARACO has a 100% success rate. For the Ackley function, RACO cannot find
the optimal solution in any run, whereas ARACO finds the solution in all runs.

In the third scenario, ARACO also is superior to RACO in 12 of the 14 proposed
functions in relation to ANFE, reaching a result 75% lower than that provided by
RACO, in the Six-Hump Camel-Back function. Noteworthy here is that, RACO
achieves only 40% success rate in the Griewangk function, whereas ARACO has super-
ior performance in relation to ANFE, in addition to reaching a 100% success rate.
RACO cannot find the optimal solution to the Ackley function, whereas ARACO can
find 85% of the executions.

The fourth scenario is where the difference becomes most significant, as ARACO ob-
tains superior performance in all 14 proposed functions in relation to ANFE, reaching
a result 79% lower than that provided by RACO, in the Bohachevesky function. In

Page 30 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 1eYy $590NG
20IquasoYy 344 60L €91 zd! 08 6. W ST 374 149 34NV
%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 1Ry $5322NG
3|eag /91 /L 8Ll 9% 061 0l 8/1 /9 8/1 89 34NV
%0 %001 %0 %001 %001 %001 %001 %001 %001 %001 jeYy $$32NS
Ana - %L - /£ L9z s8¢ 0/L 4 /51 s 3ANY
%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 1eY $590NG
143 951 14 801 L€ <! 19 01 4 51 14 34NV
%0 %001 %001 %001 %0 %58 %0 %001 %001 %001 1eYy $5322NS
Aappy - 991 801 65 - 6¢ - 6Ll LZL Lzt 34NV
%001 %001 %0 %001 %001 %001 %001 %001 %001 %001 1eY $590NG
yagnuys 99¢ 9% - ¥ ¥8C 24l [4:14 gl LSl x4 34NV
%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 1eYy $590NG
uiblisey 651 43 Ll €9 061 6/ 631 6L 951 6 34NV
9%ST %001 %001 %001 %0Y %001 %08 %001 %0/ %001 1eYy $5922NG
Abuemann 6vC 00¢ 801 /€ 11T 1T 0zt 89¢ 831 6€C 34NV
%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 1eYy $592NG
Appeo pue uep el 09 szl 44 ¥8l 14 691 9 S5l 65 34NV
%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 1eYy $590NG
AoJeUez €91 LS 801 8¢ /81 4 1L 39 SSL S 34NV
%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 d1eYy $5922NG
9dlid pue ulRIsp|oD w6¢ Sly LLL s¢ 6551 £50C 0/€ L9l €8¢ 08¢ 34NV
oovY oDVHY oovy 0DVHY oDvY lon))] oovY oDvHY oovY 0DVYY
(061 ‘00€-) = *x (1-'€-) =% (oLL ‘0€Z-) = X (0S- '009-) = *x (08 ‘08) = *x
suonduny (oL1 ‘o0l) = 'x (1) =" (0061 ‘0081) = 'x (081 ‘00€-) = 'x (00z ‘00l) = 'x

UOoIN|OS [ewdo 2Y1 UIPIUOD 10U S0P UIRWOP [BIHUI 34l USYM ODVY PUB ODVYY JO S)nsal jo uospedwod) £ ajqel

Page 31 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

%001 %001 %0 %001 %001 %001 %001 %001 %001 %001 1eYy $592NG
foeg-lpuwie) dwny-xIs 9/l ot - % L1 3% YLl L£ 991 o€ 34NV
%56 %001 %001 %001 %001 %001 %001 %001 %001 %001 1eYy $590NG
uasueH 331 851 €Ll LS 097 161 19z st S0z €8l 34NV
%001 %001 %001 %001 %001 %001 %001 %001 %001 %001 1eYy $5922NG
Aysanayoeyog 891 ve 6Ll 14 4! 85 691 s¢ gl 6¢ 34NV

oovY 0oDVHY oovy 0DVHY oDvY OoDvHY oovy oDvHY oovY 0DVHY

(061 ‘00€-) = *x (1-'€-) =% (oLL ‘0€Z-) = X (0S- '009-) = *x (08 ‘08) = *x

suonduny (oL1 ‘o0l) = 'x (1) =" (0061 ‘0081) = 'x (081 ‘00€-) = 'x (00z ‘00l) = 'x

(panupiu0s) UOIN|OS [eWRAO 3U1 UIPIUOD 10U S30P UIRWOP [BIHUI 34l USYM ODVY PUB ODVYY JO SyNnsal Jo uospedwod) £ ajqel

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 32 of 40

EARACO mRACO
180
160
— 140
5 120
5 100
= 80
m

% 60
40

g il n
0

Zakharov Martin and Rastrigin Bohachevesky Six-Hump
Gaddy Camel-Back
Benchmark functions
Fig. 6 Comparison of results of ARACO and RACO

addition, RACO cannot find the optimal solution in none of the executions of the Six-
Hump Camel-Back, Shubert and Levy functions, whereas ARACO achieves a 100% suc-
cess rate in all the proposed functions.

Finally, in the fifth scenario, ARACO surpasses RACO in 11 of the 14 functions pro-
posed in relation to ANFE, reaching a result 81% lower than that provided by RACO,
in the Six-Hump Camel-Back function. For the Griewangk function, where RACO has
superior performance, emphasis is placed on the fact that RACO’s success rate is 25%,
whereas ARACO has a 100% success rate. In the Ackley and Levy functions, RACO
cannot find the optimal solution in any of the executions, whereas ARACO achieves a
100% success rate.

All these comparisons show that ARACO has superior performance, that is, a lower
ANFE’s value, in 87% of the tests performed in scenarios where the initial domain pro-
vided does not contain the ideal solution. In some of the tests where ARACO does not
surpass RACO, RACO cannot find the optimal solution in all runs, whereas ARACO
can find the optimal solution in more runs within these scenarios. In addition, RACO
cannot find the solution in none of the executions in seven proposed scenarios,
whereas ARACO can find the optimal solution in all of these scenarios. All of this
points to the superiority of ARACO, both in terms of finding the optimal solution in a
lower average number of function evaluations (ANFE), as well as to achieve a higher
success rate, and finding the optimal solution in all the proposed scenarios. Improved
values for ANFE are obtained thanks to the acceleration of the adaptive domain adjust-
ment parameters in opportune moments, allowing for a domain, where the optimal so-
lution is present, to be found more quickly, additionally, when found, the domain
adjustment process is accelerated so that the value can be found faster. Whereas, the
highest success rate and the possibility of finding the optimal solution in all scenarios,
are advantages obtained thanks to the strategy of expansion of the domain around the
best solution found. Thus, when the algorithm enters a state of stagnation, it allows for

the generation of a new domain outside the local minimum region.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 33 of 40

Tests with the CEC 2019 benckmark functions

The CEC 2019 benchmark test functions [31] are a group of functions that are difficult
to optimize, known as “The 100-digit challenge” and which were used in an annual
optimization competition in 2019. The functions are presented in Table 8. The Func-
tion column shows the name of the benchmark function. The Formula column shows
the formula used to calculate the value of the function that will be minimized or maxi-
mized. The Minimum column shows the minimum value of the function, when the op-
timal values for each of the variables are found. The metaheuristics used for
comparison in this scenario are PSO-based algorithms, those being the Fitness
Dependent Optimizer (FDO) [32], the Dragonfly Algorithm (DA) [33], the Whale
Optimization Algorithm (WOA) [34], and Salp Swarm Algorithm (SSA) [35].

In order to facilitate the evaluation, all implementations of the CEC 2019 100-Digit
Challenge benchmark functions, used in the competition in 2019 and also in ARACO
and the other algorithms, were adapted so that the optimal values sought were 1. All
the CEC 2019 100-Digit Challenge benchmark functions defined have 10 dimensions
and the domain provided to the algorithms is ', = -100 and x, = 100, for each di-
mension i, except for the functions Storn’s Chebyshev Polynomial Fitting Problem, In-
verse Hilbert Matrix Problem, and Lennard-Jones Minimum Energy Cluster, which
have different dimensions and different initial domains, as shown in Table 9.

The results used to compare FDO, DA, WOA, and SSA were obtained from Abdullah
and Ahmed [32]. All algorithms were executed 30 times for each benchmark function
and the comparison criterion used in this section is the average of the minimum value
found by the algorithms, after 500 iterations have been run.

Table 9 shows the comparison among the averages of the minimum values found by
the algorithms after 30 executions, with 500 iterations each execution. Noteworthy here
is that the results obtained by ARACO are superior to those encountered by the other
algorithms in six out of the ten benchmark functions tested. The algorithm is in second
place in three other functions, and it is in third place only in the Weierstrass function.

One notes, the results found by ARACO are competitive and, still further, it is the
only algorithm that has results that approach the optimal value with only 500 iterations
covered, managing to find the whole number of the optimal value in 4 of the functions
tested.

Figure 7 shows a comparison between the results encountered by the five algorithms
covered in this scenario, in relation to the average of the minimum value found for
some of the benchmark functions in Table 9, after the execution of 500 iterations.

However, it is important to highlight that ARACO achieves even better results for
the proposed benchmark functions, after the 500 iterations set. However, in order for a
fair comparison to be made, the same criteria and termination condition defined by the
other algorithms were maintained. In spite of that, to guide future comparisons in fu-
ture studies, the results achieved by ARACO, after the execution of 5000 iterations, are
presented below. One notes that with this termination condition, the algorithm
achieves results superior to those achieved with 500 iterations. This proves that, as iter-
ations pass, ants are able find even better solutions. Table 10 shows the average for the
minimum value achieved by ARACO after 30 executions, with 5000 iterations each

execution.

Page 34 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

L=

60£/°98L — ="

—HS:Q

ry [
p p
P +soseeaneireL = (

0=x

=u' ANAN&imx\N&imxv Nv = \.6

< 4
L=l 1=/

T
=
N

4 u-u
(L=t =17 (17 =7
u pQ“A..»N»— ”v\r.\ %” v\,;\\ Ava =y
L 0 0
: Ol =) 4zg=m=(rm)
0 L 0
0 0 1
1=y 1=/
Prml ~{ T = ()4
u u
6=0 10} 199TL=p
0=w
gre=w ‘werilo=y Yd X ="
w
ol |i\xww =m
3SIMIBYIO ¢ ‘0
L>mgt (L+m) 3 =yd
L< My [1="m) \
=
E@.TEM =
asimiaylo ¢ \ ‘0 _
p>ajt (pn)

I
L8

T :;M =n

mm\\s\wﬁo“ fo \ﬁ
p>nyut (p-n) -
fd4d+'d=(x))

A

uonoun4 s,uibLisey

115N D ABISUT WNWIUI SSUO[-pIrUUST

wio|qold XUIB La|IH 9SI9AU|

wia|qold bumi4 [PILIOUA[Od ASYSAGaYD) S,UI01S

(«X)4 wnwiuIy

ejnwio4

uonoung

suonouNy }lewyduag abuajieyd 16IQ-00L 6107 DID 8 dgel

Page 35 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

L=

005— > 'z Jt
005 < 'z ji
0055 |z | 4

|=! 1=!

(("xig)s0d N)dxa — \xw

1=/ 1=/ 1=/
s0+a/(x L+ x50+ la-xKI=(
a a v/l a
(IX0x)6 + (Ix“170x)6 4 (X W)b + (X “1X)b = (x)4
A((A+2¥) 1000+ 1) N ([
50—(N%Jx\/v us +so=(va
Juis (00s—(00s “z)pow)
Juis ((00S “z)pow —005) p = (‘)b
(d'z))uis 'z
9€0S/7T9¥/896 0T +'X =

=

2)6” { ~aerse8Ly = (X)/
a

—)dxe 07— = (x)4

o+ —(1005-(005 “2)pow |

%A:oﬁvm “z)pow —0g|

07=""" '¢=q 's0=0p
0=) o=Y 1=/
(aus03 ,p < a-([((5'0 +),quz)s0> U_N N X4
oy oy

L=/ L=/

!
L+ A%VWS IT-2%X = (x)
X a X g
=

(01 + (xug)sod> o_lm\wi = Akvk

a

uondun4 Asppy

uondun4 18D Addey

UoIdUNS 94 S,Ja4eyds papuedxy

uoldUNS 5[242MYDS PO

UoIDUN4 SSRNSIBIBAN

uonouNn4 sybuemain

(«X)4 wnwiuIy

ejnwio4

uondung

(PanuU0D) suondUNy ylewydUSg abu3|jeyd) HBIG-001 610z DD 8 dlqel

Page 36 of 40

(2021) 27:16

de Freitas and Yamanaka Journal of the Brazilian Computer Society

vO'Le l9s/C'1e ¥09C'LC 8lLLe [qaioxdt 0L =u',[00L ‘00L=] X uondung Asppy
€CL9e LLE6'S L9¥09 4 €150 0L =u’,[00L ‘00L=] X uondun 1e) Adden
LE9 6069 €89 Lc0L9 99¢8'L 0L =u",00L '00L—] X uondun{ 94 siayeyds papuedx]
796€ 01y EV89°06Y 1€56'845 858170C1 S000'L 0L =u',[001 ‘00L—] X UondUNS §[3}aMUDS PILIPON
86/09 G80L°01 G568'6 ceelel 88¢S0L 0l =u (001 '00L—] X uonouN4 sseisisiopy
¥80C'C elLe (@A X4 6eLe Ge90'L 0L = u',[00L '00L—]:x uondun4 sybuemsno
9¢69'L¥ ¥S/916¢€ L9SErire LEBOYE S6¥9'S 0L = u',[00L ‘00L—]x uondun4 suibiisey
GeoLel oLl 9coLel yeoLel 9eL9°¢Cl 8l = Uyl ‘y=]:x 431sn|D ABIaUT WnWIUIN SSUO-PleulS
epesl Seve/l 89¢€0'8L 4 eVl 9l = U ' [¥8E9L ¥8EIL—] X WS|qOId XIIB WSG|IH 9SI9AU|
63509 ol3LLy 0l3ers LTS8SY 6309'S 6= U',[C618 '7618-T X Walqoid Buml4 [RILOUAIOd ASYSAGaYD S,UI01S
VsSS YoM va odad 0ODVHY uoidung

suonouNy spewspUsg abuajieyd UBIA-001 6107 DID Y1 YIM SIS21 Ul SDISUNSYRISW JaY10 pue ODYYY JO s1nsal Jo uosiiedwo)) 6 ajqeL

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 37 of 40

BEARACO mFDO mDA mWOA mSSA

16
14
o 12
=
s 10
E 3
j=1
£
£ ©
2 : I II I
2) hill
. ™ |] [[]
Lennard-Jones Griewangk Weierstrass Expanded Happy Cat
Schaffer's

Benchmark functions

Fig. 7 Comparison of results of ARACO and other metaheuristics
.

Conclusions

ARACO was proposed with the objective of allowing for the solving of optimization
problems in the real world, searching for the optimal solution, providing initial do-
mains with or without the optimal solution. For such, an improvement in the RACO al-
gorithm was proposed, allowing the acceleration of the parameters responsible for the
locating and narrowing of the correct domain, in order to accelerate performance. In
addition to a strategy that allows the algorithm to leave local minimum regions, permit-
ting ARACO to find the optimal solution in practically all runs.

Tests were executed to prove the proposed strategies in relation to their operation in
provided domains that contain the optimal solution. As such, ARACO provides prom-
ising results, showing superiority regarding the number of function evaluations neces-
sary to reach the optimal value, in a majority of the tested benchmarks functions,
across three proposed comparison groups. These groups were probability-learning
methods that model and sample probability distributions, metaheuristics developed for
combinatorial optimization and adapted to continuous domains, along with methods
inspired by the behavior of ants.

Table 10 Results of ARACO after running 5000 iterations

Function ARACO
Storn’s Chebyshev Polynomial Fitting Problem X [-8192,8192]", n =9 5.23E6
Inverse Hilbert Matrix Problem X":[~16384, 16384]", n = 16 1.3992
Lennard-Jones Minimum Energy Cluster X:[-4,4" n=18 83911
Rastrigin’s Function 7;[—100, 100]", n = 10 3.3252
GriewangKk's Function X"[~100, 100]", n = 10 1.0085
Weierstrass Function 7:[—100, 1001, n =10 22961
Modified Schwefel's Function X":[-100, 100]", n = 10 1.0001
Expanded Schaffer's F6 Function x:[~100, 100]", n = 10 1.2062
Happy Cat Function X":[~100, 100]", n = 10 24945

Ackley Function X[=100, 100]", n = 10 10.8957

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 38 of 40

The obtainment of good results, through operating in provided domains that do not
contain the optimal solution, is very desirable, as in real-world problems one cannot al-
ways be guarantee that the initial domain provided for the algorithm contains the opti-
mal solution. In these cases, ARACO demonstrates a very effective performance, since
in addition to being able to find the optimal value in a lower number of function evalu-
ations than its predecessor RACO in 87% of the tested scenarios; it is able to find the
optimal value in all the proposed scenarios, achieving a 100% success rate on virtually
all tested functions. These advantages are obtained thanks to the acceleration of the
adaptive domain adjustment parameters at opportune moments, allowing for a greater
speed of convergence of the algorithm was obtained, and thanks to the extension of the
domain around the best solution found, when the algorithm is stagnant. Thus, allowing
for the generation of a new domain that contains values outside the local minimum
region.

On the subject of the tests performed with CEC 2019 100-Digit Challenge benchmark
functions, ARACO obtained excellent results, showing a superior performance over the
other algorithms in most of the tested benchmark functions, as well as being the only
algorithm to achieve the results closest to the optimum values in 500 iterations. In
addition, the results can be further improved if more iterations are executed.

As future work, the algorithm can be expanded to allow for working with functions
that have more variables, achieving a good performance, especially without compromis-
ing the accuracy and the success rate obtained. These results have already been suc-
cessfully accomplished in some of the functions implemented in the work, such as the
functions with 10 variables Sphere, Ellipsoid, Cigar, and Tablet. However, in other
functions such as Griewangk (10 variables) and Hartmann (6 variables), the algorithm
achieves high success rates, but loses in performance, performing a large number of
function evaluations until it finds the optimal value. The implemented CEC 2019 100-
Digit Challenge benchmark functions also demonstrate the need to determine better
strategies to obtain superior results in functions that have more dimensions. In
addition, a study can be performed to determine better strategies for detecting domain
stagnation and obtain better domain expansion rates around the best solution found,
according to the nature of the functions, to further improve the results obtained.

As one of the proposals of the ARACO algorithm is its applicability in solving real-
world problems, another future work should therefore be based on the practical appli-

cation of the algorithm in real-world situations.

Acknowledgements
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
The authors did not receive support from any organization for the submitted work.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations

Competing interests
The authors declare that they have no competing interests.

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16

Received: 12 February 2021 Accepted: 30 August 2021
Published online: 02 December 2021

References

1.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Antoniou A, Lu WS (2007) The optimization problem. In: Antoniou A, Lu WS (eds) Practical Optimization. Springer,
Boston, pp 1-26. https://doi.org/10.1007/978-0-387-71107-2_1

Edmonds J (2008) How to think about algorithms. Cambridge University Press, New York. https://doi.org/10.1017/
(CB0O9780511808241

Saka MP, Dogan E, Aydogdu | (2013) Analysis of swarm intelligence-based algorithms for constrained optimization. In:
Yang XS, Cui Z, Xiao R, Gandomi AH, Karamanoglu M (eds) Swarm Intelligence and Bio-inspired Compuation. Elsevier,
Oxford. https://doi.org/10.1016/B978-0-12-405163-8.00002-8

Kaur SP (2013) Variables in research. Indian J Res Rep Med Sci 3(4):36-38

Wu Z, Xue R (2019) A cyclical non-linear inertia-weighted teaching-learning-based optimization algorithm. Algorithms
12(5):94. https://doi.org/10.3390/a12050094

Serapido ABS (2009) Fundamentos de otimizacdo por inteligéncia de enxames: uma viséo geral. Sba Controle
Automacao 20(3):271-304. https://doi.org/10.1590/50103-17592009000300002

Goldberg DE (1989) Generic Algorithm in search, optimization and machine learning. Addison-Wesley, Reading, Boston
Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous
spaces. J Glob Optimization 11(4):341-359. https://doi.org/10.1023/A:1008202821328

Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press,
Cambridge

Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical Report 91-016, Politecnico di
Milano

Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst
Man Cybern Part B (Cybernetics) 26(1):29-41. https://doi.org/10.1109/3477.484436

Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman
problem. IEEE Trans Evol Comput 1(1):53-66. https://doi.org/10.1109/4235.585892

Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report — TR06, Erciyes
University, Engineering Faculty Computer Engineering Department Kayseri, Turkey

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95 - International Conference on
Neural Networks 4, Perth, WA, pp 1942-1948. https.//doi.org/10.1109/ICNN.1995.488968

Sudholt D, Thyssen C (2012) Running time analysis of ant colony optimization for shortest path problems. J Discrete
Algorithms 10:165-180. https//doi.org/10.1016/}jda.2011.06.002

Ding QL, Hu XP, Sun LJ, Wang YZ (2012) An improved ant colony optimization and its application to vehicle routing
problem with time windows. Neurocomputing 98:101-107. https://doi.org/10.1016/j.neucom.2011.09.040

Blum C, Sampels M (2004) An ant colony optimization algorithm for shop scheduling problems. J Math Model
Algorithms 3(3):285-304. https://doi.org/10.1023/B:JMMA.0000038614.39977.6f

Dorigo M, Stutzle T (2019) Ant colony optimization: overview and recent advances, Handbook of Metaheuristics. Int Ser
Oper Res Manage Sci 272:311-351. https;//doi.org/10.1007/978-3-319-91086-4_10

Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3):1155-1173. https//
doi.org/10.1016/j.ejor.2006.06.046

Bilchev G, Parmee | (2006) The ant colony metaphor for searching continuous design Spaces. In: Selected Papers from
AISB Workshop on Evolutionary Computing. Springer-Verlag, Berlin, Heidelberg, pp 25-39. https://doi.org/10.1007/3-540-
60469-3_22

Huang H, Hao Z (2006) ACO for continuous optimization based on discrete encoding. In: Proceedings of the 5™
International Conference on Ant Colony Optimization and Swarm Intelligence - ANTS 2006. Springer, Berlin, Heidelberg,
pp 504-505. https://doi.org/10.1007/11839088_53

Dréo J, Siarry P (2004) Continuous interacting ant colony algorithm based on dense heterarchy. Future Generation
Comput Syst 20(5):841-856. https://doi.org/10.1016/jfuture.2003.07.015

Monmarché N, Venturini G, Slimane M (2000) On how Pachycondyla apicalis ants suggest a new search algorithm.
Future Generation Comput Syst 16(8):937-946. https://doi.org/10.1016/50167-739X(00)00047-9

Chen Z, Zhou Z, Luo J (2017) A robust ant colony optimization for continuous functions. Expert Syst Appl Int J 81:309—
320. https;//doi.org/10.1016/j.eswa.2017.03.036

Leguizamon G, Coello CAC (2010) An alternative ACOR algorithm for continuous optimization problems. In: Proceedings
of the 7" International Conference on Ant Colony Optimization and Swarm Intelligence - ANTS 2010. Springer-Verlag,
Berlin, Heidelberg, pp 48-59. https://doi.org/10.1007/978-3-642-15461-4_5

Liao TJ, Montes da Oca MA, Aydin D, Stutlze T, Dorigo M (2011) An incremental ant colony algorithm with local search
for continuous optimization. In: Proceedings of the genetic and evolutionary computation conference - GECCO'11.
Association for Computing Machinery, New York, pp 125-132. https.//doi.org/10.1145/2001576-2001594

Liao TJ, Stutzle T, Montes da Oca MA, Dorigo M (2014) A unified ant colony optimization algorithm for continuous
optimization. Eur J Oper Res 234(3):597-609. https://doi.org/10.1016/j.ejor.2013.10.024

Yang Q, Chen W, Yu Z, Gu T, Li Y, Zhang H, Zhang J (2017) Adaptive Multimodal Continuous Ant Colony Optimization.
IEEE Trans Evol Comput 21(2):191-205. https;//doi.org/10.1109/TEVC.2016.2591064

Liu L, Dai Y (2014) Gao J (2014) Ant colony optimization algorithm for continuous domains based on position
distribution model of ant colony foraging. Sci World J 2014:1-9. https://doi.org/10.1155/2014/428539

Kern S, Muller SD, Hansen N, Buche D, Ocenasek J, Koumoutsakos P (2004) Learning probability distributions in
continuous evolutionary algorithms — A comparative review. Nat Comput 3(1):77-112. https;//doi.org/10.1023/B:NACO.
0000023416.59689.4e

Price KV, Awad NH, Ali MZ, Suganthan PN (2018) The 100-digit challenge: Problem definitions and evaluation criteria for
the 100-digit challenge special session and competition on single objective numerical optimization. Technical Report,
Nanyang Technological University, Singapore

Page 39 of 40

https://doi.org/10.1007/978-0-387-71107-2_1
https://doi.org/10.1017/CBO9780511808241
https://doi.org/10.1017/CBO9780511808241
https://doi.org/10.1016/B978-0-12-405163-8.00002-8
https://doi.org/10.3390/a12050094
https://doi.org/10.1590/S0103-17592009000300002
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.jda.2011.06.002
https://doi.org/10.1016/j.neucom.2011.09.040
https://doi.org/10.1023/B:JMMA.0000038614.39977.6f
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1007/3-540-60469-3_22
https://doi.org/10.1007/3-540-60469-3_22
https://doi.org/10.1007/11839088_53
https://doi.org/10.1016/j.future.2003.07.015
https://doi.org/10.1016/S0167-739X(00)00047-9
https://doi.org/10.1016/j.eswa.2017.03.036
https://doi.org/10.1007/978-3-642-15461-4_5
https://doi.org/10.1145/2001576-2001594
https://doi.org/10.1016/j.ejor.2013.10.024
https://doi.org/10.1109/TEVC.2016.2591064
https://doi.org/10.1155/2014/428539
https://doi.org/10.1023/B:NACO.0000023416.59689.4e
https://doi.org/10.1023/B:NACO.0000023416.59689.4e

de Freitas and Yamanaka Journal of the Brazilian Computer Society (2021) 27:16 Page 40 of 40

32,

33.

34.

35.

Abdullah JM, Ahmed T (2019) Fitness dependent optimizer: inspired by the bee swarming reproductive process. IEEE
Access 7:43473-43486. https://doi.org/10.1109/ACCESS.2019.2907012

Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective discrete
and multi-objective problems. Neural Comput Appl 27(4):1053-1073. https://doi.org/10.1007/500521-015-1920-1
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51-67. https://doi.org/10.1016/j.a
dvengsoft.2016.01.008

Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv Eng Soft 114:163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1109/ACCESS.2019.2907012
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.advengsoft.2017.07.002

	Abstract
	Introduction
	ARACO
	Problem definition
	Discretization of variables
	Building a new solution
	Adaptive domain adjustment
	Adaptive pheronome increment
	Adaptive domain division
	Adaptive number of ants
	Acceleration of adaptive domain adjustment parameters
	Expansion of the domain around the best solution
	The steps of the ARACO algorithm
	Step by step
	Flowchart

	Experimental results
	Tests where the initial domain contains the optimal solution
	Probability-learning methods that model and sample probability distributions
	Metaheuristics developed for combinatorial optimization and adapted to continuous domains
	Methods inspired on the behavior of ants

	Tests where the initial domain does not contain the optimal solution
	Tests with the CEC 2019 benckmark functions

	Conclusions
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	References
	Publisher’s Note

