
Journal of the
Brazilian Computer Society

Carvalho et al. Journal of the Brazilian Computer
Society (2020) 26:5
https://doi.org/10.1186/s13173-020-00099-y

RESEARCH Open Access

Relationships between design problem
agglomerations and concerns having types
and domains of software as transverse
dimensions
Luis Paulo da S. Carvalho1*, Renato L. Novais2 and Manoel Mendonça3

Abstract

Context: Design problems have been recognized as one of the main causes behind the loss of software systems’
quality. Agglomerated design problems impact the quality even more. So, organizing and analyzing the relationship
between design problems and concerns as agglomerations is a possible way to enhance the identification of
defective source code artifacts.

Problem: As different systems evolve in varied manners, it is important to analyze if the evolution of agglomerated
design problems can reveal cases of discrepancies and inconstancies through time. We call these cases non-uniformity
of agglomerations, and they can prevent the use of agglomerations in approaches to mitigate design problems (e.g.,
prediction models). To the best of our knowledge, we consider that this problem has not been investigated yet.

Goal: This study aims to comprehend the degree to which the non-uniformity of agglomerations is either the most
common or the most exceptional situation during the evolution of software projects. We perform this investigation by
grouping software projects under two transverse dimensions: types and domains of software.

Method: To this end, we performed a two-phase investigation: in phase I, we analyzed the historical data obtained
from fifteen software projects split as three groups of types of software (distributed, service-oriented, and mobile
projects); in phase II, we analyzed the evolution of six projects grouped as two domains of software (graph and
timeseries databases). For each phase, we (i) mined instances of a design problem (code complexity) and concerns
from the source code of projects, (ii) agglomerated the instances of code complexity around the concerns and
analyzed them according to the grouped projects, and (iii) examined the resulting dataset with the help of
visualizations and a statistical analysis.

Results/Discussion: Types of software actually shows a tendency to reveal cases of non-uniformity. On the other
hand, domains of software show a partial advantage regarding the production of more uniform agglomerations
through evolution.

Keywords: Design, Problems, Agglomerations, Concern, Transverse, Dimension

*Correspondence: luispscarvalho@gmail.com,luiscarvalho@ifba.edu.br
1Federal Institute of Bahia, Av. Amazonas 3150, Zabelê, 45030-220 Vitória da
Conquista, Brazil
Full list of author information is available at the end of the article

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-020-00099-y&domain=pdf
mailto: luispscarvalho@gmail.com, luiscarvalho@ifba.edu.br
http://creativecommons.org/licenses/by/4.0/

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 2 of 25

Introduction
As software projects evolve, developers usually seek to
ensure the quality of the source code. One way to grant
the quality relies on finding and managing the occurrence
of design problems [1, 2]. A design problem is one kind of
phenomenon that affects the maintainability of software
projects [3]. For instance, developers can analyze how the
presence code smells (a.k.a, smells) increases the com-
plexity of systems [4–6]. According to Fowler and Kent
[7], code smells can be defined as a potential indication
of problems in the source code of information systems.
Thus, it is important to define new approaches to spot
them whenever possible. An example of approach can be
found in the work of Oizumi et al. [8]: they noticed that
when smells interconnect as agglomerations, they show
more potential to hinder the quality of software projects.
Therefore, developers must investigate how to take advan-
tage from the occurrence of agglomerations in order
to improve applications. If single dispersed instances of
smells can contribute for increasing the complexity of
systems, what can be said when they agglomerate?
Considering this context, we have been investigating

the relationship between design problem agglomerations
and concerns [9]. In our work, we have adopted the fol-
lowing definition of concern: “anything that stakeholders
consider as a conceptual unit” [10, 11]. User interface
(UI), exception handling, persistence, test, and logging
are examples of concerns. Specifically, we focus on con-
cerns obtained from external components that are made
available by third-party developers (more details in the
“Extraction of concerns” section).
Additionally, we are interested in analyzing the impact

of agglomerated design problems considering three dif-
ferent types of software: distributed, service-oriented, and
mobile systems. The rationale behind our research is:
Different types of software may require the implementa-

tion of common/shared concerns—for instance, regardless
the type of software, developers may always add “Test”
routines to validate systems’ functionalities.
In opposition, other concerns remain particular to spe-

cific types of software—“UI” is not usually implemented by
web services, but it is a feature generally found in mobile
applications.
If a certain design problem affects concerns that are

common to different software systems, it may be advan-
tageous to define global strategies to mitigate such prob-
lem—for example, complexity increases in source code
artifacts that host code smells. If “Test” is the main con-
cern implemented bymany smelly artifacts of systems “M”
(a mobile system), “S” (a service-oriented system), and
“D” (a distributed system), developers may find it inter-
esting to define a global/general strategy to jointly remove
smells from the test-related artifacts of “M”, “S”, and “D.”
Developers would have a chance to unify each system’s

complexity mitigation approaches regardless their distinct
types.
In this paper, we extend our use of agglomerations

to consider a new aspect: evolution. We investigate if
agglomerations are uniformly distributed over software
projects’ history. Barry et al. [12] and Goulão et al. [13]
pointed out that there are differences in the way how
systems evolve. Some systems are modified and stay pro-
ductive for many years, while others are soon replaced
or discontinued. Some systems suffer few changes, and
others undergo constant changes. As a consequence, it
is possible to affirm that software projects do not fol-
low uniform patterns during their lifecycle. This can
impact the way how we analyze design problem agglom-
erations (more details in the “Agglomerations” section).
For instance, not all versions of software systems agglom-
erate instances of design problems. As well, it may not
be the case that the agglomerations follow a successive,
uniformly spaced pattern through time. If so, the appli-
cability of agglomerations can be undermined, because a
lack of uniformity can prevent their use in approaches that
require seasonality to explore information patterns, e.g.,
the creation of prediction models [13].
In summary, our goal is to understand how the lack

of uniformity during the evolution of software systems
affect the analysis of agglomerations. To this end, we con-
sider an adequate definition of uniformity as follows: it
addresses the characteristic of the agglomerations of being
non-volatile as a software system evolves through time,
enabling the identification of patterns concerning the
appearance of design problems. On the other side, non-
uniformity refers to situations in which the occurrences of
agglomerations are volatile during systems’ evolution.
Our study (i) mines concerns and code complexity

related to the incidence of code smells from the history
of software projects, (ii) agglomerates complexity around
concerns, (iii) analyzes combinations between concerns
and agglomerations of complexity through the evolution
of three types of software project, and (iv) presents a
variation of our analysis in which we substitute types
for domains of software as a way to group software
projects.
We consider both types and domains of software as

transverse dimensions. A transverse dimensions is a clas-
sification schema which we use to maximize the mining
of design problems and concerns. Regarding our study,
“types” refer to software systems which are similar to
each other regarding targeted platforms (e.g., android
apps) and architecture (e.g., distributed and service-
oriented systems). We group as “domains” software sys-
tems that share the same context of use (e.g., graph-
oriented databases). We provide more details about trans-
verse dimensions in the “Types and domains of software
as transverse dimensions” section.

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 3 of 25

Our findings showed that agglomerations follow a non-
uniform pattern through the evolution of projects when
types of software are adopted as transverse dimension.
They also revealed that domains of software are partially
better suited to produce cases in which the distribution of
agglomerations is more uniform.
The remainder of the paper proceeds as follows: We

present a background about our on-going studies in “The-
oretical and technical background”; “Study definition”
describes the definition of this new study; results are
shown in“Results”; in “Discussion,” we discuss the implica-
tions and effects of the results; “Threats to validity” elicits
the threats to validity; “Related work” presents related
papers; our final remarks can be found in “Conclusion”;
in Abbreviations, we describe some important abbrevia-
tions that we mention throughout the paper; Replication
and reuse contains instructions about how to replicate our
studies and reuse our dataset and tool.

Theoretical and technical background
In this section, we explain an important concept related
to our study: the association between design problem
agglomerations and concerns. Specifically, we discuss
about agglomerations and present ourmining and analysis
approach.

Agglomerations
Agglomerations is the first concept that we need to
describe. Our definition of agglomerations stems from
Oizumi et al.’s concept of “semantic agglomerations” [8]:
agglomerations are situations in which different source
code artifacts affected by design problems address a par-
ticular concern. We are interested in the pieces of infor-
mation systems (e.g., *.java files in java-oriented applica-
tions) that contains design problems (e.g., code complex-
ity caused by the presence of code smells) and, at the
same time, implement a concern (e.g., “Logging”). Next,
we exemplify our use of agglomerations.
Figure 1 illustrates three agglomerations. They are

named after concerns found in a software project (project
“P”). This means by mining “P,” we find out that its devel-
opers automated “Test,” “Security,” and “Logging.” The
figure shows the relationship between the agglomerations
and three artifacts of “P”: “A.java,” “B.java,” and “C.java.”
“A.java” takes part in the “Test” agglomeration (in red)
because it automates tests and hosts a design problem.
“A.java” logs some of its routines, so we also add it to the
“Logging” agglomeration (in blue). As “B.java” implements
“Logging” and contains a design problem, we add it to
the “Logging” agglomeration as well. Developers inserted
some routines related to “Security” in “B.java”, so we asso-
ciate it with the “Security” agglomeration (in green). We
are not interested in “C.java” because it either does not
implement any of the three concerns or it does not contain

a design problem. Consequently, “C.java” is not part of any
agglomeration.
In [9], we examined the combinations between differ-

ent types of software and agglomerations. We based our
analysis on previous work [1, 8, 14–16] which studied
agglomerations of code smells. As a result, we found out
that one possible way to visualize and analyze agglomera-
tions is to stratify them as cases of similarities. Similarities
comprise concerns which are shared by different types of
software. Similarities can be divided into full similarities
and partial similarities. Next, we explain and exemplify
these types of agglomerations.
Figure 2 exhibits the relationship between concerns and

applications grouped according to their types: distributed,
service, and mobile. Full similarities include cases in
which common concerns agglomerate design problems
for all of the mentioned types. “Test” is one example
of this type of agglomeration. This means we found out
that the “Test” concern is associated with instances of
code smells in the projects categorized as services. We
also spotted the same association in the distributed and
mobile systems. “Serialization,” “Database Connectivity,”
“Network Access,” “Service-Orientation,” “Data Format
Processing,” and “Stream Processing” are other examples
of full similarities. Partial similarities agglomerate design
problems for only a subset of the types. “Code Optimiza-
tion” and “Mocking” are examples of this type of similarity,
because we found both concerns in distributed andmobile
projects, but we did not find them in the services.
We need to measure the size of the agglomerations as

a way to compare them. We have resorted to the use
of density. Density is an indirect metric that we calcu-
late in order to compare the agglomerations and to pro-
duce visual clues (charts) about how strong/weak is the
association between design problems and agglomerations.
Figure 3 shows how we use the density of god classes
(y-axis) to mine full similarities (x-axis) from systems1.
In the figure, we used the Lines of Code (LOC) metric
to measure the density of the agglomerations. Consider-
ing, for instance, the “Test” concern, we found cases of
source code artifacts that implement “Test” in all three
types of software, and some of these artifacts encapsu-
late god classes. Specifically, we agglomerated 1185 LOC
from god classes of mobile applications, 1099 LOC from
god classes of service-oriented projects, and 612 LOC
from god classes found in distributed systems (the y-axis
shows the total amount of LOC for the entire set of god
classes). In other words, the developers of all the three
types of software which we examined implemented tests
in some source code artifacts, and the first vertical bar in
the figure shows the density (or the strength) of the asso-
ciation between the test concern and the code smell that
1Table 2 informs the name of the systems, the interval of time during their
evolution and the number of files that we mined from them

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 4 of 25

Fig. 1 Agglomerations of project “P”

Fig. 2 Types of similarities

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 5 of 25

these artifacts host: god class. The same happens for other
concerns presented in Figs. 3 and 4.
Figure 4 shows partial similarities for distributed and

mobile software systems. It has the same agglomerations
presented in previous example (Fig. 3) and two new ones
which are particular to these two types of software: “Code
Optimization” and “Moking.” These two concerns are par-
ticular to this subset of software projects. This means the
service-oriented projects did not contain any artifact that
implemented either “Code Optimization” or “Moking”
and hosted god classes.
The charts exhibited in Figs. 3 and 4 show a top-level

view of how software projects agglomerate design prob-
lems around concerns. As a consequence, they do not
show details about the evolution of the agglomerations. By
not displaying the complete history of how changes affect
similarities through time, the graphics may lead observers
into perceiving the agglomerations as uniform or perfectly
seasonal. We see this as a risk for our analysis: a top-level
view of the data may hide discrepancies and cases of non-
uniformity that only a detailed analysis of the evolution
can reveal.

Mining and analysis approach
We developed an approach to automate the mining
and analysis of the association between design prob-
lem agglomerations and concerns [9]. The approach has
enabled us to fulfill some demanding characteristics of
our studies: (i) we want to mine a large quantity of data
to assertively base our results, conclusions, and discus-
sions; (ii) ideally, information about concerns should be
extracted from Software Architecture Documents (SAD)
or, otherwise, it should be directly provided by the devel-
opers of software projects. However, we found neither
SADs in the targeted projects, nor we were able to contact
the projects’ developers. With the purpose of circumvent-
ing such limitations, we automated the tasks exhibited in
Fig. 5 as much as possible:
Identify concerns—the fulfillment of this task relies on

information that developers embed in Project Object
Models (POM) and Gradle files. When added to sys-
tems, these files are responsible for automating the injec-
tion of external third-party components.Miningmetadata
about components from POM/Gradle files enables us to
recover developers’ decisions regarding the implementa-
tion of concerns (task 1.1). We complement the mining of
the metadata by retrieving further information about the
components from MVNRepository2. MVNRepository is
a web portal responsible for indexing useful information
about third-party components. Our approach uses MVN-
Repository to mine categories for components found in

2https://mvnrepository.com/

projects’ POM/Gradle files (task 1.2). As MVNReposi-
tory does not provide a category for all components (
i.e., many components remain uncategorized), a manual
classification of concerns is required (task 1.3). We detail
the identification and the classification of concerns from
POM/Gradle files in the “Extraction of concerns” section.
Associate concerns with design problems—the main goal

of this task is to mine agglomerations of design problems
from the source code of systems. At the same time, it must
associate the agglomerations with the concerns extracted
from the POM/Gradle files. We depend on Repository
Miner (RM) to mine metrics and design problems from
the historical data obtained from systems’ GIT-based
repositories [17] (tasks 2.1 and 2.2). After mining the
historical data, our approach associates the instances of
design problems with the concerns in the form of agglom-
erations (task 2.3). As the mining of projects’ source code
produces a large amount of data, RM depends on Mon-
goDb3 for storage. Mongo’s orientation to store data as
documents provided us with a flexible and intuitive way
to associate information about design problems with con-
cerns.
Export dataset for specialized analysis—our approach is

able to externalize the information mined from the source
code of projects in a more concise reusable way: as a
Comma-Separated Value (CSV) dataset. We believe that
exporting the dataset as CSV files maximizes reusability.
This type of file can be used by different tools (e.g., spread-
sheet editors) to automate analysis in response to varied
needs. This task requires the implementation of export-
ing strategies (task 3.1) to select data from the mined
information and generate a specialized dataset (task 3.2),
i.e., as the mining of concerns and design problems pro-
duces a large database, it is necessary to extract excerpts of
data to address systems’ specific characteristics and design
problems.
Perform specialized analysis—we count on the use of

scripts to load (task 4.2) and run the analysis (task
4.3) on the dataset generated by task 3. Externaliz-
ing the analysis as scripts favors the expansion of
our approach in considering investigations other than
the ones contained in this paper. This means other
researchers and practitioners can reuse our dataset by
writing their own scripts (task 4.1) to perform their own
analysis.
We have developed a tool which encapsulates routines

to automate the execution of our approach. Our Archi-
tectural Knowledge Suite (AKS) can help researchers and
practitioners to mine concerns and agglomerations of
design problems and to analyze the association between
the two.

3https://www.mongodb.com/

https://mvnrepository.com/
https://www.mongodb.com/

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 6 of 25

Fig. 3 Similarities between software types and concerns (density by god class) [9]

Extraction of concerns
Development teams often use POM and Gradle files to
inject third-party components in software projects [18,
19]. In fact, we were able to find POM and Gradle files
in all versions of the projects that we wanted to ana-
lyze. Common advantages achieved by reusing third-
party components are related to the addition of pre-

implemented and pre-tested functionalities. Therefore,
they can improve software quality and reduce effort dur-
ing development [20]. Figure 6 exemplifies how AKS
mines concerns from POM and Gradle files: suppose
that developers have added components, org.dbunit and
org.springframework, to POM files of two distinct software
projects. AKS is capable of processing the POM files to

Fig. 4 Partial similarities between distributed and mobile software systems (density by god class) [9]

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 7 of 25

Fig. 5Mining and analysis approach (adapted from [9])

mine the components’ IDs: groupId and artifactId. As the
IDs ensure that each component is uniquely and unam-
biguously identified, AKS uses them to retrieve metadata
about org.dbunit and org.springframework from MVN-
Repository. In Fig. 6, AKS indicates “Testing Frameworks”
as the category retrieved from MVNRepository. Later on,
we manually fill the most adequate concern which rep-
resents each component’s category. In the example, we
chose “Test”.
The manual classification of concerns can be seen

as counterproductive and detrimental to the quality of
our study. However, we have prepared AKS to mini-
mize the impact of this limitation by parameterizing
its execution with the help of configuration files. To
assure correctness, we recommend that more than one
software development specialist review any dataset gen-
erated by AKS. For instance, prior to running this
study, we reviewed the manual classification of con-
cerns with the help of two specialists who have both
academic and professional experience. They filled the
missing categories and concerns after checking each com-
ponent’s web sites, wikis, and other sources of infor-
mation. Appendix I (on page 29) contains the com-
plete list of concerns mined from the projects that we
analyzed.

Study definition
This section details the conducted study. It explains how
we measured the density of agglomerations to address
a design problem: code complexity. It also presents the
research questions that guided this study.

Density of agglomerations from code complexity
We have added routines to AKS to measure the degree to
which each concern agglomerates design problems. As a
result, AKS is capable of calculating the density of code
complexity agglomerations from the Weighted Methods
per Class (WMC) metric. In the context of this study,
WMC’s value is obtained from the sum of the cyclo-
matic complexity of all methods within smelly classes [4].
We took this decision after analyzing related researches
which affirm that code complexity increases significantly
in software artifacts that are affected by smells [4–6]. As
AKS depends on RM to mine software projects, we are
restrained to the set of code smells that it is able to detect:
god and brain classes. Considering that RM’s god and
brain classes detection rules naturally test the values of
WMC against thresholds4, we guarantee that our study’s
findings are based on relevant cases of code complexity.
4More information about RM’s code smells detection rules can be found in
https://github.com/visminer/repositoryminer/wiki/Available-Code-Smells

https://github.com/visminer/repositoryminer/wiki/Available-Code-Smells

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 8 of 25

Fig. 6Mining of concerns (adapted from [9])

The fictitious example in Fig. 7 illustrates how AKS
calculates the density of code complexity agglomer-
ations. AKS finds two instances of god classes in
“god_class1.java” and “god_class2.java” and one instance
of brain class in “brain_class1.java.” These are artifacts
of project “P.” “God_class1.java” is associated with both
“Test” and “Serialization” concerns. “God_class2.java”
and “brain_class1.java” are associated with the “Serial-
ization” concern only. For each concern, AKS obtains
the normalized value of the density by calculating
the mean-WMC (m-WMC) of classes. For example,
AKS normalizes the density of “Test” by dividing the
sum of WMC of all instances of “god_class1.java” by
the number of times the smell appeared during the
evolution of “P.” Then, AKS adds the m-WMC of
“god_class1.java” (50) to the density of “Test.” Simi-
larly, AKS sums the m-WMC of “god_class2.java” (25),

“god_class1.java” (50), and “brain_class1.java” (25) to
determine the density of “Serialization” (100). Calculat-
ing the normalized density of the agglomerations enabled
us to create visualizations to evaluate how design prob-
lems agglomerate around concerns. Relying on visu-
alizations to present our findings grants two main
advantages:

1 Visualizations are useful to comprehend large
amounts of information in a more tangible way [22].
This is the case with the information which AKS
mined from the software projects mentioned in this
study. By extracting evolutionary data to run our
analysis, AKS produced an extensive quantity of data.
As a consequence, we applied visualizations to
present our results in a more concise and intuitive
manner;

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 9 of 25

Fig. 7 Complexity-based density of agglomerations of project “P”

2 Considering that spotting design problems in
software systems is effort-consuming, such task
should be supported by visualizations to inform how
problematic source code scatters through projects
[23].

Types and domains of software as transverse dimensions
We believe that there is an optimal way to arrange
software projects in order to maximize the analy-
sis of concerns. Specifically, we conjecture that it is
possible to enhance our investigations after choosing
a transverse dimension. We define transverse dimen-
sions as classification schemas which we use to esca-
late the mining of concerns by joining systems’ histor-
ical data together. In the context of our research, we
cover two transverse dimensions: types and domains
of software.
Table 1 explains how we differentiate types and domains

of software. We follow a strategy that distinguishes “appli-
cation domain” from “programming domain” [24]: “appli-
cation domain” (or domains of software, as we call it)
refers to the context of the problem that is addressed by a
piece of software, while “programming domain” (or types
of software, as we refer to) concerns itself with technical
details of implementing applications.

Research questions
We defined two research questions as focus of our inves-
tigations:
RQ1 – Does source code complexity follow a uniform

pattern as it agglomerates around concerns through the
evolution of different types of software?
RQ1 is the main question of this study and addresses

the problem of non-uniformity of agglomerations. As
explained in the “Introduction” section, the norm being
the non-uniformity poses a limitation for our approach. It
canmake its application in the development of methods to

Table 1 Types and domains of software

Dimen. Definition Examples

Types Systems which are similar Android Mobile

to each other regarding Apps, Client

development platforms Server Systems,

and architecture Services

Domains Systems that share either E-commerce

the same context of use Applications,

or fulfill analogous Databases,

features [21] Chatbots

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 10 of 25

manage design problems difficult. We used the m-WMC
metric and the software projects described in Table 2 to
answer this question. We applied AKS to analyze a total
number of 30921 files through the historical data of the
projects.
RQ2 – Is there any other transverse dimension that can

produce cases of more uniformly distributed agglomera-
tions through the evolution of software projects?
So far, we examined the effects of a particular transverse

dimension on the agglomerations of design problems:
types of software. However, there is a possibility that other
dimensions may present distributions of agglomerations
that are more uniform. For instance, domains of software

seems to be a fit candidate. We highlight that adopting
domains as a transverse dimension to group systems is a
new contribution of our studies.
To answer this question, we selected and grouped

software projects under a specific domain of soft-
ware: databases. Databases are good examples of sys-
tems in which developers embed components/concerns,
and they have been considered a valuable domain for
studies [25]. Table 3 describes the two sub-domains
of databases that we analyzed: graph and timeseries
databases. We used AKS to analyze a total number of
39485 files through the historical data of the database
projects.

Table 2 Analyzed projects (transverse dimension: types of software) [9]

Type Project Description Period N-files

Distributed Geniea Federated job orchestration engine 2017-04–2018-01 2012

developed by Netflix

Pinotb A realtime distributed OLAP datastore 2016-01–2017-12 7586

ShardingSpherec An open-sourced distributed database middleware 2016-05–2018-02 2693

solution suite

Titand A database optimized for storing and querying 2012-06–2015-09 2698

large graphs

Zipkine A distributed tracing system 2017-06–2018-01 1577

Service-oriented Cellbasef NoSQL DB and Web Services to access 2016-09–2017-11 1193

biological data

GeoApig New York Senate Geopolitical Service API 2013-03–2018-03 1076

OHDSIWebh Services for the Observational Health 2016-09–2017-10 1450

Health Data Sciences and Informatics

OpenLegislationi New York Senate Legislation Service API 2013-02–2018-04 2812

OpenMRSj OpenMRS REST Web Services Module 2017-02–2017-10 2068

Mobile IrcCloudk A Chat on IRC for Android 2013-09–2018-05 528

OkHttpl Android client for the OkHttp 2013-06–2018-02 965

network optimization suite

NextCloudm Android version of the Next Cloud Application 2017-10–2018-01 1331

Retrofitn Type-safe HTTP client for Android and Java 2013-09–2016-01 392

Signalo A messaging app for simple private communication 2014-12–2018-04 2540

with friends
, , , , , , , , , , , , ,
a
https://github.com/Netflix/genie

b
https://github.com/linkedin/pinot

c
https://github.com/sharding-sphere/sharding-sphere

d
https://github.com/thinkaurelius/titan

e
https://github.com/openzipkin/zipkin

f
https://github.com/opencb/cellbase

g
https://github.com/nysenate/GeoApi

h
https://github.com/OHDSI

i
https://github.com/nysenate/OpenLegislation
j
https://github.com/openmrs/openmrs-module-webservices.rest
k
https://github.com/irccloud/android

l
https://github.com/square/okhttp
m
https://github.com/nextcloud

n
https://github.com/square/retrofit

o
https://github.com/signalapp/Signal-Android

https://github.com/Netflix/genie
https://github.com/linkedin/pinot
https://github.com/sharding-sphere/sharding-sphere
https://github.com/thinkaurelius/titan
https://github.com/openzipkin/zipkin
https://github.com/opencb/cellbase
https://github.com/nysenate/GeoApi
https://github.com/OHDSI
https://github.com/nysenate/OpenLegislation
https://github.com/openmrs/openmrs-module-webservices.rest
https://github.com/irccloud/android
https://github.com/square/okhttp
https://github.com/nextcloud
https://github.com/square/retrofit
https://github.com/signalapp/Signal-Android

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 11 of 25

Table 3 Analyzed projects (transverse dimension: domains of software)

Domain Project Description Period N-files

Graph JanusGrapha Highly scalable graph database 2017-04–2018-10 5657

Neo4Jb High performance graph store with all the 2018-09–2018-12 26497

features expected of a robust database

Titanc Database optimized for storing and querying 2012-06–2015-09 3570

large graphs

Timeseries OpenTSDBd Distributed, scalable timeseries Database 2015-11–2018-12 1440

KairosDbe Fast distributed scalable timeseries database written 2015-11–2018-11 1884

on top of Cassandra

Timelyf Timeseries database that provides secure access 2016-06–2017-08 827

to timeseries data
, , , , ,
a
https://github.com/JanusGraph/janusgraph

b
https://github.com/neo4j/neo4j

c
https://github.com/thinkaurelius/titan

d
https://github.com/OpenTSDB/opentsdb

e
https://github.com/kairosdb/kairosdb

f
https://github.com/NationalSecurityAgency/timely

We also ran a statistical analysis on our dataset to
find correlative associations between the agglomerations
mined from the database projects. The analysis of cor-
relations is another attempt to observe cases of unifor-
mity through the evolution of grouped systems. If the
agglomerations of two (or more) software projects cor-
relate around the same concerns, this can be seen as an
opportunity for defining common strategies to manage
both projects’ code complexity. The opposite might indi-
cate that assembling software systems under a transverse
dimension is not fully advantageous. In other words, we
believe that the use of transverse dimensions is more ben-
eficial if it is possible to perceive a uniform pattern in the
way how a design problem affects grouped projects.
Figure 8 summarizes our research. In its first phase, we

agglomerate instances of a design problem (code com-
plexity). As a result, we stratify the agglomerations as
similarities. Next, we are splitting our dataset into time-
series of systems’ releases/versions to analyze how the
agglomerations evolve. Thismeans answeringRQ1 has the
purpose of knowing if splitting the dataset as a progres-
sion of releases/versions reveals that the agglomerations
are uniformly distributed through time. If not, we want
to test if the adoption of a different transverse dimen-
sion (domains of software) tend to produce more uniform
agglomerations through time (this being the goal behind
RQ2).
As last remarks about our study definition, we highlight

the following:

1 The software projects that we group as either “types”
or “domains,” and which we used in our analysis are
not mutually exclusive in terms of the concerns they
host. This means it was not part of our selection

criteria to fully dissociate projects regarding the
concerns that developers embedded in them.
Consequently, a distributed systemmay include some
concerns which service-oriented systems also have;

2 We evaluated the Titan project as both a type
(distributed) and a domain (graph database) of
software. So, isolating a system within a particular
transverse dimension was not part of our selection
strategy either;

3 Figure 2 shows three types of software: service,
distributed, and mobile. We spotted the presence of
“Service-Orientation” (the concern) in all of them.
So, it is arguable that we could have categorized the
distributed and mobile systems as services as well,
because they externalize some of their functionalities
as services. We regard this type of concern as an
attempt to add a composition of concerns to
software projects. In fact, developers often benefit
from libraries that provide many features at once,
i.e., function compositions that fulfill several
concerns [26]. Including “Service-Orientation” (i.e., a
subsystem of services) in distributed and mobile
systems is an example of this. In our analysis, we have
not differentiated more complex concerns (e.g.,
“Service-Orientation,” “Test”) from others that
provide simpler functionalities (e.g., “Logging”). We
also decided to stick to the way how their developers
explicitly classified them according to descriptions
that we found in the projects’ github repositories
(footnotes in Tables 2 and 3).

Results
This section presents the results of our study after using
AKS to mine and analyze the projects described in

https://github.com/JanusGraph/janusgraph
https://github.com/neo4j/neo4j
https://github.com/thinkaurelius/titan
https://github.com/OpenTSDB/opentsdb
https://github.com/kairosdb/kairosdb
https://github.com/NationalSecurityAgency/timely

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 12 of 25

Fig. 8 Summarizing our study definition

Tables 2 and 3. As explained in the “Density of agglomer-
ations from code complexity” section, we rely on visualiza-
tions to show the results of our analysis. All visualizations
shown in this section (Figs. 10, 11, 12 and 13) follow the
same pattern:

1 They show a composition of charts, and each chart
displays evolutionary data regarding one software
project of one specific type/domain of software;

2 The x-axis is divided in versions which AKS mined
from the software projects—every single chart shows
five versions per project;

3 The y-axis quantifies the density of the
agglomerations shown in the bar plots—in this case,
we used a complexity metric (m-WMC) to calculate
the density.

Figure 9 exhibits the evolution of complexity agglom-
erations considering concerns which are common to
three types of software: distributed, service-oriented, and

mobile systems. The charts reveal some sources of non-
uniformity. Certain projects do not contribute for increas-
ing the density of the agglomerations. For instance, Genie,
Signal, and Openmrs do not amount density for any of
the concerns: “Data Format Processing,” “Database Con-
nectivity,” “Network Access,” “Service-Orientation,” “Seri-
alization,” and “Test.” Some projects produce agglomera-
tions whose densities are not constant through evolution.
ShardingSphere, Titan, IrcCloud, and GeoApi are exam-
ples of inconstant projects. We consider that the distri-
butions of agglomerations through the evolution of these
project are non-uniform. On the other hand, the evolution
of Pinot, Zipkin, Nextcloud, Okhttp, Retrofit, Cellbase,
OHDSIweb, and OpenLegislation agglomerate densities
throughout their evolution. These are cases of uniform
agglomerations.
Figure 10 shows the evolution of agglomerations mined

from distributed and service-oriented systems. “Dataset
Processing,” “Logging,” “Messaging,” “Process Execution,”

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 13 of 25

Fig. 9 Uniformity of full similarities (transverse dimension: types of software)

and “Programming Utilities” are concerns which are com-
mon to these two types of software. The non-uniformity
resides in the fact that some projects (Genie and Open-
MRS) do not show any density for these concerns through
their evolution. Additionally, the density is not detected in
some versions of other projects. This is the case of Shard-
ingSphere, Titan, and Geoapi. Projects like Pinot, Zipkin,
Cellbase, OHDSIweb, and OpenLegislation show a more
consistent flow of agglomerations as they evolve.
Figure 11 exhibits the partial similarities between

mobile and service-oriented software projects. The list of
concerns includes the ones exhibited in Fig. 9 and two
others that are particular to these two types of software:
“Security” and “Stream Processing.” OpenMRS shows
no agglomeration through its evolution. Agglomerations
obtained from IrcCloud, Signal, Geoapi, and OpenLeg-
islation are non-uniform through evolution. NextCloud,
OHDSIweb, OkHttp, Retrofit, and Cellbase show more
uniform distributions.
Figure 12 shows partial similarities obtained from com-

paring distributed and mobile applications. They share
only one concern beyond those shown in Fig. 9: “Mock-
ing.” Genie and Signal do not agglomerate any density

through their evolution. ShardingSphere, Titan, and Irc-
Cloud do not show a uniform distribution of agglom-
erations as they evolve. Pinot, Zipkin, NextCloud, and
Retrofit are more uniform.
Now, we present the results regarding the use of

domains of software as transverse dimension. Figure 13
shows the collection of full similarities mined from the
projects described in Table 3. One noticeable aspect of the
figure is that the projects share more common concerns, if
compared to our previous analysis of types of software (as
seen in Fig. 9). A visual inspection of the figure points out
that the agglomerations are more uniformly distributed
through the evolution of the systems.
In order to confirm the uniformity, we further examined

the data statistically. Considering the possibility of helping
developers to manage design problems, it is desirable that
the agglomerations are uniformly distributed along the
software projects’ evolution. For instance, “Test” seems to
be uniformly distributed as it affects many versions of the
projects, according to a visual inspection of Fig. 13. How-
ever, we wonder if the “Test” agglomerations can correlate
with each other through a timeseries of versions/releases.
As explained, our method can be more advantageous if it

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 14 of 25

Fig. 10 Uniformity of partial similarities: distributed X service-oriented (transverse dimension: types of software)

enables developers to define strategies to treat the inci-
dence of design problems in a set of projects grouped
under the same transverse dimension.
Table 4 contains a series of correlational tests performed

on the associations between the agglomerations shown in
Fig. 13. For each concern shared by two distinct projects,
we tested if the evolution of the agglomerations occurred
in concomitance. As the data is not normally distributed,
we relied on a non-parametric analysis method (spear-
man).
The tests exhibited in Table 4 revealed a multitude of

results in which high correlations are mixed with low
ones. For example, “Test” produced significant correla-
tions between certain pairs of systems (e.g., Janusgraph–
Titan, Janusgraph–OpenTSDB), but no significant cor-
relation between others (e.g., Janusgraph–Neo4j, Titan–
Timely). As the latter are not exceptional cases, we cannot
assume that comparing the evolution of code complexity
from any two paired software projects reveals a uniform
pattern.
Figures 14 and 15 in Appendix I summarize the relation-

ship between concerns and software projects regarding
the two transverse dimensions which we investigated:
types (Fig. 14) and domains of software (Fig. 15). In the

“Discussion” section, we discuss the impact of our obser-
vations and analysis and use them to answer our research
questions.

Discussion
We found out that arranging instances of design problems
(e.g., code complexity of classes that host code smells)
as agglomerations is a possible way to manage prob-
lematic source code artifacts [9]. As a result, we ended
up with similarities representing the association between
design problems and concerns, as the ones exhibited in
Fig. 3. However, displaying similarities that way can elude
developers in perceiving the data as perfectly seasonal or
uniform. For instance, “Test” is shown as a full similarity
in the figure. However, considering a deeper analysis, in
which different versions of systems are examined, “Test”
fails to occur in all versions (as seen in Fig. 9). This means
analyzing the evolution of agglomerations reveals cases of
inconstancies through time.
Although we are dealing with the same dataset from

our previous study [9], this paper presents a new inves-
tigation: we are observing the agglomerations through
the evolution of software projects. Our findings make us
believe that researchers and practitioners should be aware

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 15 of 25

Fig. 11 Uniformity of partial similarities: mobile X service-oriented (transverse dimension: types of software)

about the fact that our approach is sensible to (i) the level
of details by which someone presents and analyzes the
data—Fig. 3 may hide inconstancies that Fig. 9 reveals,
as the latter follows the association between concerns
and design problem agglomerations through the evolu-
tion of systems; and (ii) the use of a different transverse
dimension may promote the uniformity while reducing
such inconstancies—Fig. 13 shows timeseries of software
projects’ releases/versions that are visually more consis-
tent than Fig. 9.
Considering the results that we presented in the

“Results” section, we provide the following answers for
our research questions:
RQ1 – Does source code complexity follow a uniform

pattern as it agglomerates around concerns through the
evolution of different types of software?
By observing the distribution of agglomerations through

the evolution of different types of software, non-
uniformity is the pattern that full and partial similarities
tend to follow. For instance, projects like Genie, Open-
MRS, and Signal do not contribute for increasing the
density of agglomerated instances of code complexity, and
the distribution of agglomerations obtained from projects
like ShardingSphere and GeoApi is non-uniform.

Alternatively, we can also say that revealing that projects
like Genie, OpenMRS, and Signal do not concentrate den-
sities for agglomerations of design problems may actually
be a positive finding. This means AKS found no instance
of god and brain classes in these projects to associate code
complexity with. This can be an indicator of the good
quality of their source code. The same can be said about
ShardingSphere and GeoApi, as they did not contribute
for the density of agglomerations. An approach to man-
age design problems may skip the analysis of such projects
or relegate them to a less important rank of problematic
systems. Meanwhile, developers can focus on the most
significant cases, e.g., Pinot and Celbase.
RQ2 – Is there any other transverse dimension that can

produce cases of more uniformly distributed agglomera-
tions through the evolution of software projects?
Domains of software like the ones that we analyzed

(graph and timeseries databases) seem prone to share
more concerns. Most probably, this comes from the
fact that a common context of use can lead devel-
opers to implement similar functionalities. Eventually,
this can even cause the injection of the same (or
similar) third-party components. Additionally, domains
are also more inclined to produce cases in which

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 16 of 25

Fig. 12 Uniformity of partial similarities: distributed X mobile (transverse dimension: types of software)

agglomerations are uniformly distributed through the
evolution of systems. While this affirmation is assertive
considering the visual examination of systems’ evolu-
tion (shown in Fig. 13), it fails under statistical analysis
(Table 4).
We believe that using domains of software to group

systems is partially advantageous, and developers may
find it useful to spot co-occurrences of design problems
that affect different applications. If the co-occurrences
are uniform through time, they may define strategies to
manage the systems, but they may not count on statisti-
cal interpretations of the data to enhance such strategies.
For example, agglomerations associated with the “Test”
concern were uniformly seen throughout the evolution
of four software systems: Janusgraph, Neo4j, OpenTSDB,
and Timely. A developer may find it interesting to check
if these projects share the same cause for the accumu-
lation of code complexity around “Test”. If a common
cause is found then he/she can define a generic solution
to manage this design problem. However, this advantage
is at risk, because the correlation between the evolution
of design problems, as they agglomerate around “Test,”

is not significant considering some paired databases (e.g.,
Janusgraph X Neo4j).
Lastly, we provide the following answer for RQ2:

adopting domains of software as transverse dimension
to group systems shows a partial advantage in pro-
ducing cases in which agglomerations are more uni-
formly distributed. Compared to types of software, group-
ing projects as domains of software revealed more
cases in which concerns are shared. A visual inspec-
tion of the agglomerations shown in Fig. 13 revealed
that the incidence of code complexity is more uni-
form across versions of the analyzed systems. As a
counterpoint, after the application of correlational tests,
the same data failed to produce a consistent statistical
uniformity.
We regard domains of software as a better grouping

transverse dimension if compared to types of software.
Lacking statistical uniformity can be seen as unsatisfac-
tory, but this may not prevent developers from investi-
gating common causes for the agglomeration of design
problems around shared concerns. If available, a statisti-
cal uniformity (of agglomerations) should be seen as an

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 17 of 25

Fig. 13 Uniformity of full similarities (transverse dimension: domains of software)

optimizer for mitigation strategies. If not, our approach is
still applicable.

Threats to validity
Now, we discuss the threats to validity we identified in our
study:
Construct validity—this type of threat is associated with

the relationship between theory and observation. As illus-
trated in Fig. 6, we mined concerns from third-party
components injected in software projects. Later on, our
approach used the “import” directive to associate source
code artifacts with concerns. However, we cannot guaran-
tee that the imported components are extensively used by
the artifacts they are injected in. We have not empowered
AKS with features to reject cases in which the imported
components are scarcely used to implement a concern.
Such features would also have to favor cases in which
the bound between components and artifacts spreads
over many lines of code or causes a more significant
impact. Therefore, using components injection to imple-
ment the concept of agglomerations is a potential source

of inconsistencies regarding precision in our data. One
way to circumvent this limitation requires embedding the
mentioned routines in AKS. This will help us to precisely
spot situations in which the influence of components (and
the association between concerns and agglomerations) is
too diluted to be taken in account. Consequently, this
might refine our dataset and observations.
Internal validity—internal validity is the extent to which

a piece of evidence supports a claim about cause-effect
relationships. Even though developers may use a given
concern extensively through an artifact, it may be the
case that the concern is not alone. Developers may feel
like importing several components to support the imple-
mentation of many concerns. This imposes a problem:
uncertainty regarding the degree to which we can relate
the occurrence of code complexity (or any other design
problem) to a concern. For instance, source code arti-
facts are not likely to focus on the use/implementation
of the “Logging” concern in isolation. “Logging” tends
to play an auxiliary role as developers often implement
it as a way to register the activities of other concerns

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 18 of 25

Table 4 Concern-based correlations between projects

Project Project Concern Corr.

Janusgraph Neo4j Database 0.44

Neo4j Mathematical Proc. 0.23

Neo4j Test 0.28

Titan Database 0.45

Titan Logging 0.04

Titan Mathematical Proc. 0.51

Titan Distributed Comp. 0.37

Titan Test 0.64

KairosDb Database 0.04

KairosDb Logging 0.22

KairosDb Mathematical Proc. 0.55

OpentsDb Database 0.31

OpentsDb Logging 0.45

OpentsDb Test 0.67

Timely Database 0.45

Timely Logging 0.56

Timely Distributed Comp. 0.09

Timely Test 0.70

Neo4j Titan Database 0.01

Titan Mathematical Proc. 0.18

Titan Test 0.80

KairosDb Data Format Proc. 0.01

KairosDb Database 0.24

KairosDb Mathematical Proc. 0.17

OpentsDb Data Format Proc. 0.60

OpentsDb Database 0.01

OpentsDb Test 0.36

OpentsDb Web App Support 0.71

Timely Database 0.01

Timely Test 0.80

Timely Web App Support 0.05

Titan KairosDb Database 0.25

KairosDb Logging 0.08

KairosDb Mathematical Proc. 0.17

OpentsDb Database 0.00

OpentsDb Logging 0.13

OpentsDb Test 0.09

Timely Database 0.04

Timely Logging 0.25

Timely Distributed Comp. 0.04

Timely Test 0.11

Table 4 Concern-based correlations between projects
(Continued)

KairosDb OpenTSDB Data Format Proc. 0.68

OpenTSDB Database 0.22

OpenTSDB Logging 0.08

Timely Database 0.25

Timely Logging 0.25

OpenTSDB Timely Database 0.05

Timely Logging 0.11

Timely Test 0.25

Timely Web App Support 0.24

(e.g., logging of steps while accessing a database and
the subsequent processing of resultsets). On the other
hand, they may specialize other artifacts in performing
“Test” routines. This comes from the fact that develop-
ers frequently create tests to deal with specific sets of a
system’s functionalities. Such specialization stems from
a good practice related to the automation of tests: sin-
gle responsibility. This principle is better achieved when
tests focus on either very few or on one single behav-
ior of a system [27, 28]. Therefore, it is more likely that
a given design problem can be associated with an arti-
fact that implements “Test” (to test one feature/behavior
of systems) than with one that hosts “Logging” (in
combination with other concerns). We must compre-
hend the use that developers make of different concerns
(in isolation vs in combination) in order to refine our
findings.
We have investigated the impact of types of software

as transverse dimension [9]. We are now studying the
effects of a new possible categorization of agglomerations:
domains of software. We claim that our findings can be
trusted. However, we still have work to do before we are
able to fully testify that a variation from types of software
to domains of software grants uniformity. We can achieve
this by finding and analyzing other related projects (e.g.,
other graph and timeseries databases) or adding new sub-
domains to our investigations (e.g., relational databases,
mathematical applications, health care systems).
It is also important to find ways to enhance the results

of correlational tests as the one that we performed on
pairs of database projects (Table 4). This may require
reanalyzing our dataset via statistical methods that favor
non-seasonal/non-uniform data. Additionally, it is imper-
ative to define strategies to pair the versions of different
projects adequately. The versions of the databases that
we tried to correlate may represent different development
stages or levels of maturity. We must find a way to match

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 19 of 25

projects’ versions to avoid comparing a system’s immature
versions with another system’s more mature ones.
External validity—this threat is related to the degree to

which our findings can be generalized. Surely, the num-
ber of types and domains of software abounds beyond the
ones we examined here. While we believe that our conclu-
sions are assertive, we cannot say that they can embrace
other projects or a different set of transverse dimen-
sions. A generalization would require expanding our stud-
ies to consider other scenarios. With this purpose in
mind, we have been improving our approach, automatiz-
ing AKS, and expanding our dataset. This can contribute
for advancing and generalizing our studies toward other
associations between software projects, design problems,
and transverse dimensions.
Conclusion validity—conclusion validity comprises rea-

sons why conclusions based on an analysis may be incor-
rect. We have conjectured about the applicability of
agglomerations to define strategies to manage the inci-
dence of design problems in software systems. We have
also cogitated that such applicability is more advantageous
if the agglomerations are uniformly distributed through
the evolution of software projects. However, we must
evaluate these conclusions in real (or near to real) situa-
tions. This must include gaining more knowledge about
(i) the actual degree to which developers would value
an approach to analyze the association between design
problems and concerns through the evolution of software
projects; (ii) the impact of uniformity and non-uniformity
in their analysis as they manage the incidence of design
problems.

Related work
This section presents related work that have dealt with
concerns, agglomerations of design problems, and trans-
verse dimensions.
In a series of papers [8, 14, 15] Oizumi et al.

investigated how to use code anomalies to address
architectural and design problems in software sys-
tems. In their analysis, they grouped software projects
based on their types (e.g., web frameworks and
middlewares) and design styles (e.g., N-layers and
MVC).
Vidal et al. [1] explored the use of agglomerations

to prioritize the management of damaging smells. Vidal
et al. also emphasize the applicability of architec-
turally relevant concerns and the use of different design
styles (e.g., N-layers and MVC) as transverse dimen-
sions to evaluate the impact of design problems. Both
this and the previous work contributed to shape many
of the concepts that we have applied in our studies.
However, they did not analyze their results consider-
ing the impact of transverse dimensions as deeply as
we have.

Kazman et al. [29] and Mo et al. [30] interrelated
software artifacts to address architectural design flaws
through the evolution of analyzed software projects.
They pointed out that clustering source code files
into special structures called Design Rule Hierarchy
(DRS) can help developers to spot parts of systems
that are more error and/or change-prone. However,
they did not show any results regarding the analy-
sis of concerns and their relationship with transverse
dimensions.
Tufano et al. [31] investigated when and why instances

of code smells are introduced in software projects.
Their research resembles our own as both seek to
understand how the appearance of code smells fluc-
tuates through the evolution of software systems.
Tufano et al. provided a broad study about the phe-
nomenon, but they did not focus on grouping the ana-
lyzed data around concerns or any specific transverse
dimension.
Dosea et al. [16] evaluated the impact of design deci-

sions on the definition of metrics for the analysis of source
code. They also relied on concerns (or design roles, as they
call it) from different types of software (e.g., eclipse’s plug-
ins, android applications, web-based systems) to base their
studies.
We also mention our previous study [9] as related

work. The study provided us with the first insights
about agglomerations and helped us to produce the
results discussed in the “Theoretical and technical back-
ground” section (Figs. 3 and 4). However, we soon noticed
that adopting types of software as transverse dimension
could make the applicability of agglomerations less advan-
tageous.
Our work either differs from or expands the aforemen-

tioned ones by bringing the association between soft-
ware evolution and transverse dimensions into focus.
We used these two aspects in the analysis of design
problem agglomerations. We have also introduced a
new mining technique to extract concerns from soft-
ware projects when their architecture has not been
documented.

Conclusion
We introduced some concepts regarding the represen-
tation of design problems agglomerations as full and
partial similarities [9]. We adopted types of software
as a transverse dimension to maximize the number
of similarities and pointed out the possibility of using
our findings to develop strategies in order to mit-
igate the bad effects of design problems. Now, we
are observing how agglomerations distribute themselves
through the evolution of systems as we group them
under two transverse dimensions: types and domains of

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 20 of 25

software. Our analysis provided us with the following
conclusions:

1 Software systems of the same domain seem to share
more concerns in comparison with systems grouped
as types of software. As a consequence, we were able
to stratify more agglomerations as similarities;

2 Visual inspections of our charts (Figs. 10, 11, 12
and 13) point out that the agglomerations of design
problems are more uniformly distributed through the
evolution of software projects grouped under the
same domain;

3 After conducting a statistical evaluation
(correlational test) on our dataset, we found out that
the agglomerations fell short from a desired uniform
mathematical precision.

Considering all the aforementioned findings, we believe
that using domains of software as transverse dimen-
sion can grant a partial but important advantage in
comparison to types of software. Domains are advanta-
geous as they are prone to reveal more cases of con-
cerns being shared by software systems. Additionally, the
resulting agglomerations of design problems distribute
themselves more uniformly through systems’ evolution.
Although failing to correlate under a statistical analysis
can be seen as unfavorable, we do not regard this as so
impacting that it may prevent developers from using our
approach.
Among our future works, we have the intention to

circumvent the problems and limitations elicited in the
“Threats to validity” section. As well, we intend to per-
form other investigations. For instance, we would like to
broaden the variability of transverse dimensions.Wewon-
der if other transverse dimensions have potential to reveal
more cases of uniformity related to the way how design
problems agglomerate around concerns. For instance,
development methods might be a good future addition to
our studies. How are agglomerations distributed through
the evolution of software projects which have adopted
Test-Driven Development (TDD) [32] as method? Com-
pared to standardized classic methods, we expect to see
TDD-based projects agglomerating more density for test-
related concerns right from the beginning of software
evolution. Perhaps, projects that follow classical methods
(e.g., cascade) [33] might have a tendency to cluster design
problems around this concern only during later develop-
ment phases. If this is the case, design problems which
usually plague test artifacts will tend to appear at different
moments depending on the chosen method. Developers
can use this information to manage test-related design
problems when the time is right.
In the “Study definition” section (last paragraph), we

highlighted the possibility that embedding third-party

components in software projects can lead to composition
of concerns [26]. We even mentioned the case of “Service-
Orientation” being found in distributed and mobile sys-
tems as a way to implement subsystems of services. It
seems possible to contrast the effects of using third-party
components to inject simpler libraries (e.g., to implement
“Logging”) from the embedding of more complex ones
(e.g., “Geospatial Processing,” “Bioinformatics”). We can
categorize the later as frameworks and associate them
with attempts to add collections of features and concerns
that are common to specific domains of software [34].
Thus, as another future work, it is important to evaluate
if our approach is adequate to spot developers’ strate-
gies to use frameworks in order to compose interrelated
concerns.
We believe that we could improve our dataset by mak-

ing it more reactive to the way how developers contribute
for software projects. We are not sure that they usually
look around through the evolution of systems to find
and manage code smells and the complexity caused by
them. Consequently, a pattern in the way how the com-
plex pieces of source code evolve may not be observable.
By not reacting to smells, developers may have other
motivations to change software projects, and perhaps,
the motivations reside in the concerns. Developers of
graph databases may tend to focus on improving con-
cerns that are important to this type of software: “Graph
Computing,” “Mathematical Processing,” and “Distributed
Computing” (here, we are assuming these ones as exam-
ples of most important concerns for the sake of argu-
ment). As well, they may consider other concerns as
less significant or some concerns will not demand many
changes through time. We can raise a new hypothesis
then: To systems grouped under a given transverse dimen-
sion there is a subset of concerns which most develop-
ment effort centrepoints to. Tracking the evolution of such
concerns can reveal the actual problems developers deal
with in a daily basis. This may provide a more refined
approach to help developers: instead of (firstly) selecting
design problems and agglomerating problematic artifacts
around concerns, we should better try to find artifacts
that implement concerns which attract developers’ atten-
tion more often (e.g., an exceeding number of commits
affecting artifacts that implement “Graph Computing,”
“Mathematical Processing,” and “Distributed Computing”
may indicate this) and then identify the design prob-
lems that usually affect these artifacts. This can be opti-
mal as it may provide a reactive dataset about prob-
lems associated with concerns that developers care the
most while discarding/deprioritizing others which are of
less impact.

Appendix I – Concerns

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 21 of 25

Table 5 List of concerns

Concern Purpose Found in...(*)

D S M G T

Service-Orientation Allows the communication with (web)services or enables a project to X X X X X

provide (web)services

Data Compression Supports data compression X X

Configuration Performs automatic configuration of systems’ modules X X X

and functionalities

Metrics and Measurement Measures systems’ metrical/quality attributes X X X

Web App Support Enables the embedding of server-client protocols X X X X X

Graph Computing(**) Supports the mathematical processing of graphs X X X

Stream Processing Enables data streaming to-from systems X X

Text Indexing Processes data in the form of text X X

Geospatial Processing Supports the processing of geospatial data X X

Test Automates self-testing of systems’ modules X X X X X

I/O Processing Accesses/processes information obtained from I/O devices X

Logging Allows the logging of routines executed by systems X X X X X

Data Format Processing Imports-exports to-from data formats, e.g., xml, json X X X X X

Process Execution Executes external processes, e.g., external programs X X X X

Report Enables the preview and printing of reports X

Database Enables the communication with client applications or database X X X X X

servers

Serialization Supports the serialization of data X X X X X

Benchmark Enables benchmark tests in applications X X

Distributed Computing Adds distributed-computing features to software systems X X X

ElasticSearch Processing Supports the processing of document-based information X

Parsing Makes the parsing and compiling of source code possible X X X X

Dataset Processing Enables the processing of dataset formats, e.g., CSV X X

Security Adds features related to data security, e.g., encryption X X X X X

Dependency Injection Makes the injection of third-party components during runtime X

possible (hotplug)

Caching Supports the definition of data caching strategies X X

Encryption Enables data encryption X X X

Tracing Allows the processing of tracing stacks X

Geometry Adds functionalities use to process geometric shapes’ attributes X

Bulding/Deploy Supports the building and the deployment of systems’ releases X

Authentication Enables the authentication of users or client applications X

Cloud Computing Allows the communication with cloud-based applications X

Mailing Enables the sending/receiving of electronic messages X

Messaging Supports the implementation of message queues X X

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 22 of 25

Table 5 List of concerns (Continued)

Validation Automates validation of data structures during runtime X

e.g., java beans validation

Programming Utilities Provides special data structures, e.g., list, map, set X X X X X

Barcode Reading Allows the reading of barcodes X

Multimedia Supports the integration with multimedia resources X

Bioinformatics Allows the processing of biological data X

UI Allows the creation of user interfaces X X X X

Cluster Management Makes the management of clustered data possible X

Mathematical Processing Provides support for complex mathematical processing X X X

(*)D distributed, S services,MMobile, G graph, T timeseries
(**)Not to be confounded with “graphical” computing. A graph is a data structure consisting of vertex and edge sets and a relation that associates each edge with two vertices
[35]. Graph computing is the computation of this type of data structure

Fig. 14 Concerns per projects (dimension: types)

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 23 of 25

Fig. 15 Concerns per projects (dimension: domains)

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 24 of 25

Replication and reuse
We have made a replication package available in5 : www.dropbox.com/s/
ss7qwfdse90c73l/replication.zip. The version of AKS used in this study can be
found here: www.dropbox.com/s/jk1tzjbtpufg5n0/aks.zip. As our is an
on-going research, we have been improving our dataset and AKS. The latest
updates can be found in https://gitlab.com/luispscarvalho/AKS. This also
implies that we have reviewed our classification of concerns since our
previous work [9]. As a consequence, we modified the name of some
concerns, e.g., “Database Connectivity” is now called “Database.” Additionally,
some concerns have been merged into one, as we noticed that they are often
used to implement the same set of functionalities. For instance, we grouped
“Mocking” and “Test” as “Test,” because mocking components are usually
applied to add testing capabilities to systems.

Availability of supporting data
Instructions about how to replicate our studies can be found in Replication
and reuse.

Abbreviations
Below, we summarize the terms and abbreviations that we used throughout
this paper: AKS: Architectural Knowledge Suite. AKS is our mining tool; CSV:
Comma-Separated Value. CSV is the type of dataset that AKS generates when it
is necessary to analyze design problems with the help of scripts; LOC: Lines of
Code. The first metric that we used to calculate the density of agglomerations
when we conducted our previous study [9]; POM: Project Object Models.
Source code artifacts which we extract information about concerns from; SAD:
Software Architecture Document. The first type of artifact which we tried to
extract concerns from; TDD: Test-Driven Development. Another transverse
dimension that we intend to use to group software projects (future work);
WMC: Weighted Methods per Class. WMC is the metric that we applied in this
study to measure the density of code complexity agglomerations

Acknowledgements
Not applicable.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Federal Institute of Bahia, Av. Amazonas 3150, Zabelê, 45030-220 Vitória da
Conquista, Brazil. 2Federal Institute of Bahia, Rua Emídio dos Santos, s/n,
40301-015 Salvador, Brazil. 3Federal University of Bahia, Av. Ademar de Barros,
s/n, 40170-115 Salvador, Brazil.

Received: 15 February 2019 Accepted: 22 June 2020

References
1. Vidal S, Guimaraes E, Oizumi W, Garcia A, Pace AD, Marcos C (2016)

Identifying architectural problems through prioritization of code smells.
In: 2016 X Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS). IEEE, Maringa. pp 41–50

2. Le DM, Carrillo C, Capilla R, Medvidovic N (2016) Relating architectural
decay and sustainability of software systems. In: 2016 13th Working
IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, Venice.
pp 178–181

3. Trifu A, Marinescu R (2005) Diagnosing design problems in object
oriented systems. In: 12th Working Conference on Reverse Engineering
(WCRE’05). IEEE, Pittsburgh. pp 10–164

4. Lanza M, Marinescu R (2010) Object-oriented metrics in practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. 1st. Springer Publishing Company, Incorporated

5It contains a README file with instructions about how to (re)use the
replication package

5. Fontana FA, Ferme V, Marino A, Walter B, Martenka P (2013) Investigating
th impact of code smells on system’s quality: an empirical study on
systems of different application domains. In: 2013 IEEE International
Conference on Software Maintenance. IEEE, Eindhoven. pp 260–269

6. Velioglu S, Selcuk YE (2017) An automated code smell and anti-pattern
detection approach. In: 2017 IEEE 15th International Conference on
Software Engineering Research, Management and Applications (SERA).
IEEE, London. pp 271–275. https://doi.org/10.1109/SERA.2017.7965737

7. Fowler M, Beck K (2018) Refactoring: improving the design of existing
code. ISBN/ISSN: 013475770X. Addison-Wesley Professional

8. Oizumi W, Garcia A, da Silva Sousa L, Cafeo B, Zhao Y (2016) Code
anomalies flock together: exploring code anomaly agglomerations for
locating design problems. In: Proceedings of the 38th International
Conference on Engineering. ICSE ’16. IEEE, Austin. pp 440–451

9. Carvalho LP, Novais R, Mendonça M (2018) Investigating the relationship
between code smell agglomerations and architectural concerns:
similarities and dissimilarities from distributed, service-oriented, and
mobile systems. In: 2018 XII Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS). Association for
Computing Machinery (ACM), NY. pp 3–12

10. Robillard MR, Murphy GC (2002) Concern graphs: finding and describing
concerns using structural program dependencies. In: Proceedings of the
24th International Conference on Software Engineering. ICSE 2002. IEEE,
USA. pp 406–416

11. Sant’Anna C, Figueiredo E, Garcia A, Lucena C (2007) On the modularity
assessment of software architectures: do my architectural concerns
count. In: Proc. International Workshop on Aspects in Architecture
Descriptions (AARCH. 07), AOSD vol. 7

12. Barry EJ, Kemerer CF, Slaughter SA (2003) On the uniformity of software
evolution patterns. In: Proceedings of the 25th International Conference
on Software Engineering. IEEE Computer Society, USA. pp 106–113

13. Goulão M, Fonte N, Wermelinger M, Brito e Abreu F (2012) Software
evolution prediction using seasonal time analysis: a comparative study. In:
2012 16th European Conference on Software Maintenance and
Reengineering. IEEE, Szeged, Hungary. pp 213–222

14. Oizumi WN, Garcia AF, Colanzi TE, Ferreira M, v. Staa A (2014) When
code-anomaly agglomerations represent architectural problems? An
exploratory study. In: 2014 Brazilian Symposium on Software Engineering.
IEEE, Maceio. pp 91–100

15. Oizumi WN, Garcia AF, Colanzi TE, Ferreira M, Staa AV (2015) On the
relationship of code-anomaly agglomerations and architectural
problems. J Softw Eng Res Dev 3(1):11

16. Dósea M, Sant’Anna C, da Silva BC (2018) How do design decisions affect
the distribution of software metrics? In: 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC). IEEE, Gothenburg,
Sweden. pp 74–7411

17. Mendes T, Novais R, Mendonca M, Carvalho L, Gomes F (2017)
Repositoryminer - uma ferramenta extensivel de mineração de
repositorios de software para identificacao automatica de divida tecnica.
In: CBSoft 2017 - Sessao de Ferramentas

18. Agüero M, Ballejos L (2017) Dependency management in the cloud: an
efficient proposal for java. In: 2017 XLIII Latin American Computer
Conference (CLEI). IEEE, Cordoba. pp 1–9

19. Palyart M, Murphy GC, Masrani V (2018) A study of social interactions in
open source component use. In: EEE Transactions on Software
Engineering. Vol. 44. No. 12. IEEE. pp 1132–1145

20. Shatnawi A, Seriai A-D, Sahraoui H, Alshara Z (2017) Reverse engineering
reusable software components from object-oriented apis. J Syst Softw
131:442–460

21. Gomaa H, Farrukh G (1997) A software engineering environment for
configuring distributed applications from reusable software architectures.
In: Proceedings Eighth IEEE International Workshop on Software
Technology and Engineering Practice Incorporating Computer Aided
Software Engineering. IEEE, London. pp 312–325

22. Francese R, Risi M, Scanniello G (2015) Enhancing software visualization
with information retrieval. In: 2015 19th International Conference on
Information Visualisation. IEEE, Barcelona. pp 189–194

23. Oizumi W, Sousa L, Garcia A, Oliveira R, Oliveira A, Agbachi O, Lucena C
(2017) Revealing design problems in stinky code: a mixed-method study.

www.dropbox.com/s/ss7qwfdse90c73l/replication.zip
www.dropbox.com/s/ss7qwfdse90c73l/replication.zip
www.dropbox.com/s/jk1tzjbtpufg5n0/aks.zip
https://gitlab.com/luispscarvalho/AKS
https://doi.org/10.1109/SERA.2017.7965737

Carvalho et al. Journal of the Brazilian Computer Society (2020) 26:5 Page 25 of 25

In: Proceedings of the 11th Brazilian Symposium on Software
Components, Architectures, and Reuse. p 5

24. O’Brien MP, Buckley J, Shaft TM (2004) Expectation-based,
inference-based, and bottom-up software comprehension. J Softw Maint
Evol Res Pract 16(6):427–447. Wiley Online Library

25. Tempero E, Anslow C, Dietrich J, Han T, Li J, Lumpe M, Melton H, Noble J
(2010) The qualitas corpus: a curated collection of java code for empirical
studies. In: 2010 Asia Pacific Software Engineering Conference. IEEE,
Sydney. pp 336–345

26. Busch A, Fuchß D, Eckert M, Koziolek A (2019) Assessing the quality impact
of features in component-based software architectures. In: European
Conference on Software Architecture. Springer, Cham. pp 211–219

27. Runeson P (2006) A survey of unit testing practices. IEEE Software
23(4):22–29

28. Bowes D, Hall T, Petric J, Shippey T, Turhan B (2017) How good are my
tests? In: 2017 IEEE/ACM 8th Workshop on Emerging Trends in Software
Metrics (WETSoM). IEEE, Buenos Aires. pp 9–14

29. Kazman R, Cai Y, Mo R, Feng Q, Xiao L, Haziyev S, Fedak V, Shapochka A
(2015) A case study in locating the architectural roots of technical debt.
In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. IEEE, Florence Vol. 2. pp 179–188

30. Mo R, Cai Y, Kazman R, Xiao L (2015) Hotspot patterns: the formal definition
and automatic detection of architecture smells. In: 2015 12th Working
IEEE/IFIP Conference on Software Architecture. IEEE, Montreal. pp 51–60

31. Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A,
Poshyvanyk D (2015) When and why your code starts to smell bad. In:
Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE, Florence. pp 403–414

32. Bajaj K, Patel H, Patel J (2015) Evolutionary software development using
test driven approach. In: Computing and Communication (IEMCON), 2015
International Conference and Workshop On. IEEE, Vancouver. pp 1–6

33. Sommerville I (2010) Software Engineering. 9th edn.. Addison-Wesley
Publishing Company, USA

34. Vale T, Crnkovic I, De Almeida ES, Neto PADMS, Cavalcanti YC, de
Lemos Meira SR (2016) Twenty-eight years of component-based software
engineering. J Syst Softw 111:128–148

35. B. West D (1996) Introduction to graph theory, vol. 2. Prentice hall, Upper
Saddle River, NJ

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Context
	Problem
	Goal
	Method
	Results/Discussion
	Keywords

	Introduction
	Theoretical and technical background
	Agglomerations
	Mining and analysis approach
	Extraction of concerns

	Study definition
	Density of agglomerations from code complexity
	Types and domains of software as transverse dimensions
	Research questions

	Results
	Discussion
	Threats to validity
	Related work
	Conclusion
	Appendix I – Concerns
	Replication and reuse
	Availability of supporting data
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Competing interests
	Author details
	References
	Publisher's Note

