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Abstract

The reliability of wireless sensor networks (WSN) is getting increasing importance as this kind of networks are
becoming the communication base for many cyber-physical systems (CPS). Such systems rely on sensor data
correctness to make decisions; therefore, faulty data can lead such systems to take wrong actions. Errors can be
originated by sensor’s hardware failures or software bugs and also from the intentional interference of intruders. The
gateways that connect such WSN to the Internet are natural intruders’ targets as they usually run conventional
operating systems and communication protocols. This work proposes a confidence attribution scheme, based on
lightweight predictors running on the sensors. The solution also proposes a parameterizable formula, in order to
stamp every value sent by a sensor with a confidence level, calculated upon the values of a subset of correlated
sensors. This work also presents an algorithm that can identify a defective sensor into its subset. The use of predictors
and confidence attribution are proposed as the basis of a mechanism that increases the WSN resilience against sensor
failure or bad data injection by intruders. Several simulations were performed to evaluate the detection efficiency
against different types of sensor errors. This work also analyses mechanisms to deal with concept drifts in the WSN
lifetime.
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Introduction
The advances in the embedded systems technology
brought the use of WSN to a variety of application fields.
Smart buildings, environmental monitoring, industrial
plants, and many other environments can be sensed and
controlled by cheap devices, equipped with sensors and
actuators, communicating on a wireless network. As these
networks are getting integrated into the Internet of Things
(IoT), it is essential that they operate in a reliable and
trustful manner. Many times, these networks are deployed
in harsh environments and are susceptible to interference
in sensing and communication. Therefore, fault toler-
ance mechanisms are essential to ensure correct readings
and actuations by the WSN elements. Faults in a WSN
can range from incorrect sensor readings, communication
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failure caused by environmental or intentional interfer-
ence, to nodes and gateways intrusion by attackers to forge
sensor readings or send incorrect commands to actuators.
Although the use of redundant devices increases the

fault tolerance in WSNs, consensus or voting algorithms
are needed to identify a faulty sensor from the good ones.
Several solutions were proposed in the literature, and the
majority uses special messages to decide if there was an
error and to determine the source. This leads to overhead
in terms of latency, bandwidth, and energy consumption
in the WSN. Hierarchical or centralized architectures try
to minimize this overhead but are subject to errors if the
data received is altered by malicious or defective nodes
while it is transmitted.
The solution proposed in this work provides self-

diagnosis capabilities to the sensor nodes, based on data
gathered from correlated neighbors, incurring little com-
munication overhead. To accomplish this, an artificial
neural network model is built offline for every type of
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sensors nodes in an interest area, based on the readings
from other correlated sensors in the same area. This
model is transferred to the sensor. At runtime, each sen-
sor listens to the data transmitted by other nodes in the
interest area and uses the model to predict its own value.
Comparing the sensed value with the predicted one, each
node is able to calculate its confidence or probability of
correctness. When the confidence reaches a lower bound,
a second step is performed, trying to determine if the node
is really faulty or if the discrepancy between the sensed
and the predicted value was caused by a faulty neighbor.
Every node transmits its sensed value, the predicted value,
and the confidence level, to provide information about its
current state to the application and to the other corre-
lated nodes. This work is an extension of [1], describing
the whole architecture, but only the confidence attribu-
tion scheme is completely implemented and evaluated.
It extends the study of the parameters’ effect on the
algorithm’s efficiency and makes a verification of how the
proposed solution handles different types of errors.
The actual main approaches used to identify faulty

nodes in wireless sensor networks are presented in
“Related work” section. “Confidence attribution using
predictors” section describes the proposed solution, the
architecture, and the algorithm used to assign confidence
to values read in each node. Afterward, in “Case study”
section, the solution is evaluated through a set of exper-
iments on data of a set of real sensors data, and in
“Comparison with the hybrid fault detection method”
section, a comparison with another algorithm is made
using a public dataset. “Concept drift detection” section
discusses aspects of concept drift detection on the sce-
nario of correlated sensors models, and “Data confidence
as trust mechanism” section describes how the proposed
mechanism can be employed to enhance the reliability
of data received from the WSN at the gateways or at
the servers. Finally, the conclusions and future work are
presented in “Conclusions” section.

Related work
A standard solution to increase the dependability of a
wireless sensors network is the deployment of redun-
dant sensors to compare readings. It demands a dense
deployment of sensors to allow the identification of the
faulty sensor among the correct ones. To avoid the dense
deployment of sensors, several alternative methods were
proposed to verify the correctness of the sensors’ data.
These methods can be centralized, running on the server,
distributed, running on the sensor nodes, or hierarchical,
when some particular nodes—like the cluster heads—
collect data from a set of nodes and run the diagnosis
algorithms [2].
The errors in the sensor’s readings were classified by [3]

and [4] in four main types. Outliers are isolated readings

that differ significantly from normal readings expected
by the models. The spike or peak errors are readings
that deviate too much from the normal values for a cer-
tain period of time. They are composed of at least a few
data samples, and not an isolated reading as an outlier.
The third type is the “stuck-at” error, when the readings
present a zero (or very little) variation for a period greater
than expected. The amount of time in which the reading
has to be “flat” to be considered a “stuck-at” must be deter-
mined for each type of sensor. Finally, the high noise or
variance is the occurrence of unusually high variance in
the sensor’s readings, in such a way that it differentiates it
from the usual noise which appears in many sensor types.
Recurrent neural networks (RNN) were used by [5] to

predict sensors values, based on previous readings of the
sensor and its neighbors. The assumption is that sensors
are of the same type, and that difference between the val-
ues read by neighbor nodes is bounded by a constant value
ε. After building and training the RNN, the difference
between the sensed value and the predicted value is com-
pared to a threshold η. If the difference is greater than η,
the node is considered faulty.
Time series analysis combined with a voting schema

is presented by [6], assuming that all nodes sense the
same phenomenon, neighbors can communicate directly,
and faults occurs interrelatedly. The autoregressive-
moving-average —ARMA(p, q)— model is applied, with
p autoregressive terms and q moving-average terms. The
calculation of the regression formula’s parameters is done
on readings that are known to be correct, before the sen-
sors’ deployment. In the voting phase, the readings of the
neighbors are collected. Then, the median of these read-
ings is calculated and compared with the actual reading of
the sensor. If the difference is greater than a threshold τ ,
the read value is considered faulty. Faulty values are not
included in the node’s history, to not disturb the moving
average used in classification.
Statistical analysis of sensed values is another method

applied for fault detection. The distributed fault detection
(DFD) algorithm, proposed by [7], uses the statistical tech-
nique of group testing (GT) that identifies a small number
of defective items in a large population. Sensors are sup-
posed to be uniformly and independently distributed in a
2D space. A sensor is considered defective if its readings
differ significantly from other sensors readings. All nodes
exchange their readings with the neighbors, run an out-
lier test, and broadcast the result. These steps are repeated
for L rounds. In the last phase, every node updates its sta-
tus, based on the results obtained from data exchanged
in the previous rounds, comparing to on a threshold γ .
The values of L and γ determine the trade-off between
false alarms and no detection and are hard to determine
for large networks. The authors also proposed an adap-
tive algorithm that dynamically determines the values of
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L and γ . A modified three-sigma edit test is proposed by
[8, 9], using the ratio between the current value, the
median and the normalized median absolute deviation
of the last n readings. If this ratio is greater than 3, it
considers the reading an outlier and the sensor as faulty.
The distributed Bayesian algorithm (DBA) is presented

by [10]. Sensors of the same type calculate the probability
of being faulty in three steps. First, the nodes periodically
exchange their values and probabilities to the other nodes
in radio range R. Sensors are in the same state (faulty
or not faulty) if the difference between their readings is
smaller than a specified threshold rt . The Bayesian for-
mula is used to calculate the fault probability of each node.
In the second step, adjustments are made to avoid that
a good node surrounded by faulty nodes becomes faulty
(and vice versa). In the third step, nodes with a fault prob-
ability higher than a given threshold τ will send a warning
message to the sink.
A distributed fault detection based on hidden Markov

model is presented in [11]. Each node uses the difference
between its value and the values of the neighbors, deter-
mining its state as possibly normal or possibly faulty. In
the sequence, the probability of the node to change its
state from good to faulty (or vice versa) is calculated using
a transition matrix built from the results obtained in the
first step. The algorithm assumes a WSN composed by a
dense deployment of sensors of the same type, to directly
compare readings.
A fault-tolerant algorithm for event detection in WSNs

is proposed in [12], called spatiotemporal correlation
based fault-tolerant event detection (STFTED). The pro-
posed scheme uses a location-based weighted voting
scheme (LWVS). It explores the spatiotemporal correla-
tion between sensor nodes, assuming a dense deployment
of sensors of the same type, to detect events. It also
assumes a mean value mn representing a normal reading
(or absence of event) and a mean value me representing
the presence of an event. At the node level, the readings of
the neighbors are weighted based on their distance. Closer
nodes have a higher influence in the estimation function,
and vice versa. In this step (LWVS), an estimator Rn for
the state node n is calculated, which can be inaccurate.
So, the second step (STFTED) uses the Bayesian formula
to calculate the probability of a node to be faulty, based
on the estimation of other nodes in the same fault range.
If the majority of nodes have a high likelihood of normal
readings, abnormal readings are considered faulty, and the
contrary is also true.
The authors of [13] proposed an algorithm named fault

detection scheme (FDS), also based on a local step, car-
ried out on sensor nodes and a second decision step that
runs on the cluster head nodes. On the local step, each
node calculates the probability of node i be faulty (joint
probability or PJi), using a Bayesian network that uses the

energy level and the sensed data of node i (ELi and SDi).
If the probability of being faulty exceeds a threshold δ, the
node classifies itself as possibly faulty (PF). Otherwise, it
classifies itself as possibly normal (PN). Each node sends
PJi and its decision to the cluster head (CH), which exe-
cutes the second step of the scheme. The CH maintains
a table called probability join table (PJT) with the PJ of
every node from the cluster. For each node i, the PJT
contains the previous and the actual PJi. When the node
decision is PF and the difference between PJt+1

i , and PJti
is greater than a threshold γ2, then the node is consid-
ered faulty. Otherwise, it is considered a false alarm. Based
on FDS, the authors proposed a distributed fault-tolerant
algorithm (DFTA) in [14], where they describe a scheme
to make the elimination and the recovery of faulty nodes.
A method based on logistic regression is proposed in

[15], with the model construction (called Learning Step)
executed on the sink, processing data from all sensors.
After training the model, it is sent to the nodes, where
it is executed. The value predicted by the model is com-
pared to the one read by the sensor. If the difference is
greater than a threshold, the node is classified as faulty;
otherwise, it is classified as normal. No method to deter-
mine the threshold value is proposed, and the authors
decide it “based mainly on experience and intuition.”
In [16], a distributed fault detection for WSNs in smart

grids is presented, based on credibility and cooperation
among sensors. Each sensor evaluates its status as suspi-
cious or not, based on the mean and the variance of a win-
dow containing the last k-sensed values. A healthy sensor
keeps the variance bounded. When a sensor detects itself
as suspicious, a diagnostic request is sent to the neigh-
bors, and the diagnostic response messages are used to
determine the node’s state. After receiving the response of
sensors in an area determined by a radius R, the node can
update its probability of being healthy or faulty.
Neural networks are used in [17] to detect and classify

different faults in a WSN of homogeneous sensors. The
work assumes that the sensors are uniformly distributed
and with a set of anchor nodes (cluster heads) that have
broad radio range and are fault free. A genetic algorithm
combined with gradient descent is used to train the neural
networks. These neural networks classify the state of the
nodes. After node classification as secure or faulty, the last
ones are disconnected from routing paths.
The use of large models, with several inputs and com-

plex interconnections, may not be the best choice for
prediction models. When data is sparse or with complex
interactions, the use of ensembles can obtain better pre-
diction results. As each classifier explores specific compe-
tence domains, an ensemble outperforms single classifier
that tries to handle all the inputs in a unique algorithm
[18]. In their work, [19] used several classifiers to deter-
mine if the readings of WSN are faulty or normal. The
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classifier uses the readings of a sensor and from the neigh-
bor nodes as input. All classifiers run on the gateway, in
a centralized way. The outputs of the classifiers are then
joined in a single decision and an estimated value, using
weighted majority voting.
Most of the presented solutions use a dense deployment

of sensors of the same type, comparing values that should
be equal or very similar. The main difference between
them is the prediction model, and some of them use
extra packet exchange in voting rounds [13] or for value
testing [7]. Although it is a possible and realistic WSN
configuration, these models are not applicable when sens-
ing a variety of values (e.g., environmental monitoring).
Replication is essential to ensure reliability, but the pre-
sented solutions demand dense deployment of each type
of sensors. This raises costs and causes communica-
tion interference and network overload. The proposed
solutions also rely on determining models and parame-
ters before the WSN deployment, not considering future
environmental changes. Extra packet transmissions in
diagnostic phases as in [16], or exchanging test results
like in [7], causes communication overhead and introduce
delays every time a node’s failure occurs.
The fault detection scheme proposed in [13] and [14]

uses a hybrid algorithm, with a step carried out on the
node, and another performed on the cluster head, which
has higher processing and memory capabilities. In oppo-
sition to [17], the proposal of this paper is not to auto-
matically disconnect faulty nodes, but allow each node to
determine its confidence on the sensed value. This can
be used to identify a faulty node, as well as to detect
data corruption by intermediate nodes. Nevertheless, the
application can also cancel the interest on faulty nodes,
making them stop sensing until they can get maintenance.
The objective of the local confidence determination

of the sensor read value proposed in this work has as
objective to avoid extra messages exchange between the
neighbor nodes to verify faults and identify their origin. It
also provides a local algorithm that can attest the data reli-
ability to make local decisions safer. Finally, it provides a
security increment, as an intruder cannot forge data with-
out getting the exact model and input parameters involved
in the confidence attribution process.

Confidence attribution using predictors
Decentralized fault detection approaches try to minimize
the message and time overhead inherent to a centralized
approach but have to deal with limited input sets and
less computational power to perform its work. Models
used to perform fault detection at the sensor level have
to take into account the resource constraints. As radio
communication is the most power-consuming resource
on a WSN and packet collision is a problem in WSNs
with a large number of sensors, or with high sampling

rates, diagnosis messages for fault detection should be
avoided.
The fault detection techniques can be applied at differ-

ent levels and classified in several ways.When considering
the parties involved in the process, they can be classi-
fied into three different classes. In a self-diagnosismethod,
the node itself can identify faults on its components. In a
group detection mode, each node monitors the behavior
of other nodes to detect errors. When using a hierarchical
detection, the detection is shifted to more powerful nodes,
such as cluster heads or the gateway. In theWSN perspec-
tive, the ideal fault detection method would be distributed
and use a self-diagnosis approach. A group detection
approach can also be used, but in a “speculative mode”,
without the use of specific diagnosis or control messages.
The assumption made in this work is that the network is

composed of different types of sensors, monitoring several
aspects of the same phenomenon or different intercon-
nected phenomena. So, it can be assumed that each node
produces data correlated with the data produced by some
other nodes. The network has to be designed in a way that
in different interest areas is a set of sensors that produce
correlated values. The size of this set is not fixed and can
vary concerning the correlation between the sensed phys-
ical quantities. Another assumption is that every node
can read the data transmitted by the other nodes. If the
communication is ciphered, some global or group key
schema has to be used. Messages can be encrypted with
a group key, allowing the data reading by other authenti-
cated nodes. For authenticity, the messages can be signed
with the node’s private key, avoiding the message content
from being altered by other nodes.
The proposed scheme aims to provide nodes with self-

diagnosis capabilities, based on data gathered from cor-
related neighbors, with no communication overhead. For
every node type in an interest area, a predictor model
is built offline, based on past readings from the different
types of sensors in this area. This work uses artificial neu-
ral networks, but any other predictor could be used. The
only requirement is that the model has to be easily trans-
mitted over the network and not demand much memory
or processing capabilities. This model (or the new param-
eters, when updating a model) is then transmitted to the
sensor, where it is stored and executed.
At runtime, each sensor listens to the data transmit-

ted by other nodes and uses the model to predict its
value. Each node calculates its confidence—or probability
of correctness—comparing the sensed value with the pre-
dicted one.When the confidence reaches a lower bound, a
second step is performed trying to determine the source of
the fault. This step is necessary to define if the cause of the
discrepancy is an erroneous reading, or if it is caused by an
erroneous input from another sensor. To accomplish this,
every node transmits the read value, the predicted value,
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and the confidence level, to provide information about its
current state to the application and the other nodes. There
is no extra packet transmission, only an increment in the
size of the transmitted packet. Assuming a 64-bit value
as a sensor reading, the increase is 9 bytes: the predicted
value plus one byte for the confidence (a value between
0 and 100). If more confidence levels are needed, more
bytes can be added to the packet. It is a design decision
whether more granularity in the confidence levels is worth
the increment on the network packet size.
In several monitored environments, the measured val-

ues can change in range, and their correlations may vary
over time, characterizing many WSNs as non-stationary
environments. The authors of [20] present a process flow
for anomaly detection under such conditions, composed
of five sub-processes, enumerated below:
1. Change detection: achieved through data monitoring

to detect changes in the data distribution. If a
significant change occurs, then a model update must
be performed.

2. Training set formation: the data vector for model
construction and training is formed using sliding
windows techniques, discarding n oldest samples and
adding n new samples to the training set.

3. Model selection: the optimal parameter set is
determined for the new training dataset.

4. Model construction: with the parameters determined
in the previous step, a new model is constructed. It
can be done in batch mode, where themodel(t− 1) is
discarded and the newmodel(t) is built from scratch,
or in an incremental mode, wheremodel(t − 1) and
n new data vectors are used to buildmodel(t).

5. Anomaly detection: the newmodel(t) is used as the
new anomaly detector for fresh data Xt+1,Xt+2, . . ..

The learning framework proposed by [21] shown in
Fig. 1 applies to such environments. When a change is
detected, the model is updated and sent to the classi-
fier. When applying this framework to WSNs, the feature
extraction, change detector, and adaptation processes can
run on a dedicated server or the Cloud, in a centralized
approach. Once the model is built or updated, it can be
transmitted to the WSN nodes and used to assign confi-
dence to their readings. It can be the sensor node itself or
intermediate nodes, in a hierarchical architecture.
The first step is the model building for a specific sensor,

based on the historical data from the sensors of an inter-
est region. This implies that a new WSN will not have a
reliable predictor on its first deployment. After some time
running, the data collected by the sensors can be used to
train a primary model for each sensor and deliver it to the
sensors. Afterwards, an update can be performed every
time the adaptation process achieves a more accurate
model.

The feature selection process searches the smallest
input set for a predictor that produces the best results
concerning accuracy and model size. This process can be
resource and time-consuming, as many combinations of
the inputs have to be evaluated. For large input datasets,
or when the correlation between the variables is unknown,
automatic attribute selection techniques can be employed.
There are several algorithms for this, with different
approaches. These algorithms can be grouped into three
classes [22]. Filter methods use statistical measures to
assign a score to each feature and create a ranking. The
lower ranked features are removed from the dataset. The
methods are often univariate and consider each feature
independently, or about the dependent variable. Some
examples of some filter methods include the chi-squared
test, information gain, and correlation coefficient scores.
Wrapper methods consider the selection of the feature set
as a search problem. Different combinations are prepared,
evaluated, and compared to each other. A predictive
model is used to evaluate a combination of features and
assign a score based on model accuracy. The search pro-
cess may be methodical as a best-first search, stochastic as
a random hill-climbing algorithm, or heuristic-based like
forward and backward passes to add and remove features.
An example of a wrapper method is the recursive feature
elimination algorithm. Embedded methods learn which
features increase the model accuracy while it is created.
The most common type of embedded feature selection
methods are the regularization methods. Regularization
methods—also called penalization methods—introduce
additional constraints into the optimization of a predic-
tive algorithm (such as a regression algorithm) that bias
the model toward lower complexity (fewer coefficients).
Examples of regularization algorithms are the LASSO,
elastic net, and ridge regression.
There are many machine learning tools available that

can efficiently execute this task, such as Weka [23] tool or
scikit-learn [24] machine learning toolkit. Different tech-
niques for feature selection can be used, such as a filter
method or a wrapper method. As communication is costly
inWSNs, it is necessary to impose an extra restriction: the
input set must be selected from the sensors close to the
target sensor. The notion of close can vary, based on the
communication layer. In a single-gateway architecture, it
can denote nodes inside radio range, so the node can lis-
ten to their transmissions. In multi-gateway architectures,
close can mean nodes two or three hops away, once the
routing makes their packets be re-transmitted by a neigh-
bor that can be listened. In this context, it is a node whose
data can be observed by the current node, which needs
the values as its predictor input. This also implies that the
application has to know the location of the sensors, which
is a requirement of many routing protocols. Figure 2 illus-
trates the whole process, where feature extraction and
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Fig. 1 Learning in non-stationary environments [21]

model building and training are performed offline, using
historical data from a database.
After identifying the set of sensors that are more corre-

lated to the target sensor, a model for each node was built
automatically. In the first experiments, multilayer percep-
trons were used. The number of layers and neurons in

each layer can be determined by heuristics and by rules.
The input layer has one neuron for each input value.
An extra input can be used for backpropagation or bias.
The output layer has one neuron, corresponding to the
predicted value. Rules like the proposed by [25] can deter-
mine the number of neurons in the hidden layer. Pruning

Fig. 2Model learning and confidence attribution scheme



Scheffel and Fröhlich Journal of the Brazilian Computer Society           (2019) 25:13 Page 7 of 20

methods [26] can determine the optimal number of neu-
rons in the hidden layer. Once built and trained, the
models are transmitted to the respective nodes.
When the predictor is received, sensors can start to

determine the correctness of their readings. The confi-
dence level C of a node is a function that evaluates the
difference between the predicted value v̂ and the sensed
value v, so C = f (v, v̂), with f as described in Eq. 1. In this
work, the mean absolute error (see Eq. 2) obtained in the
training process is used to calculate the result of the func-
tion. Comparing it to the root square mean error (RSME),
the authors of [27] state that MAE is a natural measure of
average error and is unambiguous, being widely used for
model-performance evaluation.

f (v, v̂) =
{
1, if |v − v̂| ≤ β × MAE
1 − |v−v̂|−β×MAE

α×MAE , otherwise (1)

MAE = 1
n

n∑
i=1

|vi − v̂i| (2)

The constants α and β adjust the sensitivity of the func-
tion 1. The value of β defines the tolerance margin (rela-
tive toMAE) that considers a value correct with 100% con-
fidence. If the model has good accuracy, a small value of β
can be used to detect small variations in the readings. Oth-
erwise, if the monitored value presents high variability,
this constant has to get a larger value in order to accom-
modate the variations. The value of α defines the “velocity”
that the confidence decreases as the difference between
the predicted and the monitored value increases. The
smaller α, the faster the confidence decreases. If the pre-
dicted and monitored values are too distant from each
other, the function may result negative, in which case the
confidence assumes 0 (zero).
The prediction models may show circular references

(the model to predict variable S1 depends on variable S2,
and the model to predict S2 depends on S1), since the cor-
relation is reflexive. The monitoring applications of WSN
perform periodic sampling of the sensor values. So, we
assume that it is possible to determine a period P, in which
at last one reading of each sensor type is transmitted to the
application. The majority of WSN communication proto-
cols do not guarantee the order between messages while
they are retransmitted by the intermediate nodes. Also,
the exact instant when a message arrives on a node is not
determined only by the instant it is produced. It is also
highly influenced by communication delays and network
load. The protocols only guarantee that data is delivered at
each period P, without ordering guarantees. So, it is only
possible to assume that the data from the previous period
is available. Therefore, models are trained using data from
the last period to predict the values of the actual period.
Each node will passively listen to the data sent by other

nodes, collecting the inputs for its predictor. Data pro-
duced by the nearest sensor of the input types of its model
will be buffered. This data will then be used as input val-
ues of the model for the local node, in the next period t+1
(Eq. 3).

v̂t+1
i = f

(
vt1, v

t
2, v

t
3, . . . , v

t
n
)
, for all n inputs (3)

As the environment changes, the change detector pro-
cess presented in Fig. 1 has to detect the changes and trig-
ger the adaptation process. Change detection methods
can be grouped into four main families [21]:

• Hypothesis test uses statistical techniques to verify
the classification error of a fixed-length set of
readings. The variation of the classification error is
compared to the error of the training dataset.

• Change-point methods also uses a fixed-length data
sequence, analyzing all partitions of the data
sequence to identify the instant when the data
changes its statistical behavior, called change-point.
The main drawback of this method is the high
computational complexity.

• Sequential hypothesis test instead of analyzing a
fixed-length window of data, this method inspects
each incoming sample, until they have enough
evidence that a change has occurred or not.

• Change detection tests are specifically designed to
analyze the statistical behavior of data streams
sequentially. Most of them operate by comparing the
prediction of absolute error or its variance to a
specified threshold. The threshold is hard to
determine at design time. Some adaptive algorithms
were proposed, using cumulative errors.

The authors also propose the use of hybrid change detec-
tion. A change detection test can be used in a first layer,
followed by a validation layer that uses a change-point
method.
Model update, performed after a change is detected,

consists in retraining the model with new data. The main
approaches are windowing, weighting, and random sam-
pling. At this step, one of the main questions is if the
model has to forget the oldest rules and reinforce the new
ones, or if the learning has to be cumulative. In the for-
mer case, the model is entirely retrained using new data.
This implies retraining the model every time a change
is detected but can lead to smaller models. The latter
case, incremental learning can keep past knowledge, but
models tend to be larger, demanding more memory and
processing.
In our proposed solution, a newly deployed WSN has

to run without confidence attribution for some time, to
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gather enough data to build and train models for the dif-
ferent sensors. Models are then built for each type of
sensor in the same region and can be sent to them in
a group communication. The application can control the
model transmission frequency to avoid network flooding.
Model updates are expected only when the correlation
between the sensed values changed. In a training phase,
some overhead will happen when some models have to
be updated. After some time—that depends on the envi-
ronment dynamics—it is expected to occur very rarely.
The compressed size of the model (around 3 KB) makes
it feasible to be transmitted over the WSN. The proposed
solution does not fit well to environments where the cor-
relations are changing continuously at a high rate. The use
of cumulative learning, although producing larger mod-
els, was chosen in the first experiments as it is expected
that environments with cyclic changes will stabilize over
time in the learning process, demanding much less (or
even none) updates after running for a period. The dif-
ferent approaches for drift detection and model retraining
are still under evaluation and a discussion about it is made
in “Concept drift detection” section.

Fault Identification and the interference problem
If each node sends only the value of the sensor and its
confidence, it would be hard for other nodes to make a
reasonable statement about its confidence on the sensed
value. It happens because a wrong input in the model
causes distortions in the output, leading to an erroneous
confidence attribution. For this reason, fault detection
algorithms tend to use voting or joint probability tables to
identify the fault source. In the scheme proposed in this
work, every node sends three values: the sensed value v,
the predicted value v̂, and the confidence levelC. Knowing
these three values from the correlated neighbors, every
node is able to autonomously verify the correctness of its
readings, without extra messages. On receiving an input
value v with low confidence, the local predictor will use
the predicted input value v̂ to calculate its prediction and
confidence for local v. Doing so, the failure of a sen-
sor will take longer to affect other sensors’ confidence
by interfering in their prediction models. It also enables
the identification of the faulty node, as it will show lower
confidence, unlike the other (well functioning) sensors.
At each node, the algorithm that performs the process
of confidence attribution shown in Fig. 2 is described in
Algorithm 1.
Applying only the Eq. 1 to the sensed values of the cor-

related sensors will cause an error spreading as illustrated
in Fig. 3a, leading to an interference problem. As the read-
ing faults occur in the first sensor (ambient temperature),
the predicted values of the second sensor (relative humid-
ity) change proportionally, but in the opposite direction,
once they show an inverse correlation. If no information

Algorithm 1 Confidence Attribution Routine
1: procedure Confidence_Attribution
2: // Calculates the predicted value based on sensed values
3: v̂o ← model(values)
4: diff ← |y − v̂o|
5: if diff ≤ (β ∗ MAE) then
6: confo ← 100
7: else
8: confo ← (|y − v̂o| − β × MAE)/(α × MAE) × 100
9: if confo < 0 then
10: confo ← 0
11: end if
12: end if
13: // Changes low confidence readings to the predicted values
14: for each ci ∈ confidences do
15: if (ci < γ ) then
16: values[ i]← predictions[ i]
17: end if
18: end for
19: v̂p ← model(values)
20: diff ← |y − v̂p|
21: if diff ≤ (β ∗ MAE) then
22: confp ← 100
23: else
24: confp ← (|y − v̂p| − β × MAE)/(α × MAE) × 100
25: if confp < 0 then
26: confp ← 0
27: end if
28: end if
29: if (confo > confp) then
30: return (v, v̂o, confo)
31: else
32: return (v, v̂p , confp)
33: end if
34: end procedure

but the read value is available, there is no way to determine
if the local value is good or defective. When the nodes
transmit the sensed value, the predicted value, and the
confidence level, Algorithm 1 is able to verify that relative
humidity sensor values have greater confidence when the
predictor uses the ambient temperature sensor’s predicted
value as input. Doing so, the confidence in its readings
remains high, and the faulty readings of the damaged (or
malicious) sensor do not cause harmful interference. In
the illustrated example, the γ value is set to 40, replacing
the sensed value of input by its predicted value if the con-
fidence is lower than 40%. This is shown in the graphs of
Fig. 3b. The three first peaks (between time 15 and 70)
on the first sensor caused no interference in the corre-
lated sensors’ predictions, keeping the confidence of the
correct sensor almost unchanged. Between time 150 and
200, the predicted value starts to slowly deviate from the
sensed value, making the confidence decrease as the input
error increases. When the confidence goes below 40%,
the predictor begins to replace the value from the erro-
neous input by its prediction, which restores the sensor’s
confidence level. It is important to note that the ambient
temperature graphs shows a subtle but important differ-
ence in Fig. 3b. In the lower, the interference from the
relative humidity input is reflected on the input between
time 150 and 200, until the algorithm decides to replace
the sensed values by the predictions.
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Fig. 3 Fault isolation by Algorithm 1. a The predictions of Relative Humidity are distorted by ambient temperature. b The algorithm isolates the
distortion when confidence goes bellow γ

In the next section, a case study is presented, illus-
trating the whole process and making an analysis of the
impact of different values of the algorithm’s parameters
(α, β , and γ ). Despite using artificial neural networks
and the previously presented confidence formula (1), the
proposed solution can be changed in several ways. The
central point of the architecture is the use of a predictor, a
confidence attribution formula, and the use of the output
of other sensors (read value, predicted value, and confi-
dence) to determine origin of a fault. Any component can
be replaced. Another type of predictor or a specialized
confidence formula can be employed, without significant
impact on the proposed schema.
The main reason use of a predictor and a confidence

attribution formula instead of a classifier is because the
objective is to be able to detect the different levels of

variation on the read values, not just classify the values
as correct or incorrect (and some intermediary classes).
The confidence level can be adjusted to a large number
of levels, only by adjusting the number of bytes used to
represent it, determined by the application’s needs, by the
sensors’ processing capabilities or by the number of bytes
available in the network packets.

Case study
To validate the proposed confidence attribution scheme
in a realistic scenario, we run simulations using real WSN
data along with the scikit-learn [24], Theano [28], and
Keras [29] frameworks. The data consists of nine time
series, each 1-year long and with a temporal resolution
of 1 min. The series were acquired from an environ-
mental monitoring WSN installed on a partner’s solar



Scheffel and Fröhlich Journal of the Brazilian Computer Society           (2019) 25:13 Page 10 of 20

power plant and subsequently cleaned and validated by
the engineers that commissioned the plant. Segments
corresponding to 5% of each time series were used to
perform feature selection with the SelectKBest selector
from the scikit-learn framework.
For each variable, the six other variables with the high-

est correlation were selected to be used as the predictor’s
input. The variables and the selected features are shown
in Table 1. The hour and minute of each datapoint’s
timestamp are recurring features that are relevant to all
variables. The month of the year, which would have been
a good indicator of the seasonality of solar energy gener-
ation, was not detected as a feature because the training
data covered less than 1 month. This will intentionally
make the model susceptible to concept drifting, and it
will be shown and discussed in “Concept drift detection”
section.
After the feature selection, an artificial neural network

(ANN) was built for every sensor, using the multilayer
perceptron architecture. All ANNs have the same struc-
ture, with six neurons in the input layer (one for each
feature), five neurons in the hidden layer, and one neuron
in the output layer. The Keras API [29] and the Theano
library [28] were used to build, train, and evaluate the
ANNs. The small size of the model makes it suitable to
be transmitted to the sensor nodes and executed locally

Table 1 Feature selection result

Target Selected predictor inputs

Diffuse solar irradiation Direct solar irradiation, global solar
irradiation, barometric pressure,
Datalog internal temperature

Direct solar irradiation Diffuse solar irradiation, global solar
irradiation, ambient temperature,
Datalog internal temperature

Global solar irradiation Diffuse solar irradiation, direct solar
irradiation, barometric pressure,
Datalog internal temperature

Barometric pressure Diffuse solar irradiation, global solar
irradiation, ambient temperature,
Datalog internal temperature

Rainfall Index Diffuse solar irradiation, barometric
pressure, ambient temperature,
Datalog internal temperature

Wind direction Diffuse solar Irradiation, barometric
pressure, ambient temperature,
Datalog internal temperature

Ambient temperature Global solar Irradiation, barometric
pressure, Datalog internal
temperature, relative humidity

Datalog internal temperature Global solar irradiation, barometric
pressure, ambient temperature,
relative humidity

Relative humidity Global solar irradiation, barometric
pressure, ambient temperature,
Datalog internal temperature

to make the predictions. After the ANNs were built, the
MAE was calculated over the training dataset for each
variable, as shown in Table 2. As an example, the MAE
value for the ambient temperature makes a value of v be
considered having 100% confidence if it lies in the range
[ v̂− 0.41697, v̂+ 0.41697], where v̂ is the predicted value,
when β = 1.0. This interval can be shrunk or stretched by
modifying the value of β .
Once the model building phase was finished, several

simulations were carried out to verify the accuracy of
the proposed confidence attribution scheme. Five differ-
ent data chunks were extracted from the original dataset,
each one with 1440 samples (1-day sampling). The eval-
uation was done in two steps. First, to evaluate the mod-
els efficiency in identifying and isolating errors in one
sequence (its origin), several errors of the outlier type [4]
were injected at random points in the data in the ambi-
ent temperature and the Datalog internal temperature
sequences. One hundred forty-four errors were injected
in each sequence, independently, and 144 errors were
injected simultaneously on both sequences. The objective
of injecting simultaneous errors in both sequences was to
verify if the substitution of read value by the predicted one
in a sequence would lead Algorithm 1 tomask the error on
the other sequence. Algorithm 1 was executed on the data
chunks, measuring the detection and false positives rates.
The variation of the three algorithm parameters—-namely
β , α, and γ—allowed to verify their influence on the algo-
rithm efficiency. In the next set of experiments, the other
three types of error defined by [4]—peaks, “stuck-at,” and
noise—were injected in the data sequences, to verify the
algorithm sensitiveness to each type of error. The objec-
tive was to verify if errors are correctly detected when
the values deviate significantly from the normal ones. No
error classification is expected in this work. So, if different
types of error appear, causing significant deviation on the
monitored values, the algorithm only assigns a lower con-
fidence to the variable, no matter what kind of error has
occurred.

Table 2 MAEs calculated for predictors

Sensor Model’s MAE

Diffuse solar irradiation 2.5799

Direct solar irradiation 15.8076

Global solar irradiation 16.2823

Barometric pressure 0.7605

Rainfall Index 0.0017

Wind direction 28.9098

Ambient temperature 0.41697

Datalog internal temperature 0.7318

Relative humidity 3.3265
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Figure 4 shows the effects of injecting outliers in the
sequences of the ambient temperature and the Data-
log internal temperature values. The peaks in the values
(green dotted lines) on the two top graphs show the points
where the errors were injected, at random instants. The
peaks in the predicted values (blue dashed lines) show the
effects of the injected errors in the predictor’s output of
the related variables. When the incorrect input leads to
confidence lower than the threshold defined by γ (40%
in this experiment), the algorithm makes the substitution
by the input’s predicted value, trying to get the predicted
value closer to the range of correct values if its value is
correct. So, it is normal that small peaks appear on the
predicted values.

Algorithm parameter evaluation
To evaluate how the algorithm parameters influence on
the results, several errors of outlier type were randomly
injected in each data chunk. The amplitfude of the error

was also randomly defined. So, it is expected that not
every error is detected with confidence bellow γ , as some
generated values can fall inside the range of acceptable
values. The ambient temperature and the Datalog internal
temperature sequences were chosen to have their values
changed, as they are input for all other predictors, and
also show high interdependence. The errors were injected
as described previously. The process was repeated ten
times with each data chunk, and the mean values of the
detection and false positive rates were calculated.
The error detection rate (EDR) is the percentage of the

injected errors that are correctly identified by the pro-
posed algorithm. A false positive occurs when a node with
no error injection presents a confidence level below the γ

parameter (Algorithm 1, line 15), at the next period where
an error was injected in another sequence. As explained
in formula 3, each read value is used as input of the pre-
dictors in the next time period. This implies that low con-
fidence on this variable results from a wrong prediction

Fig. 4 Error injection for evaluation of Algorithm 1
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caused by the injected error. This is unexpected and the
algorithm tries to eliminate, or at least to minimize, its
impact. As some errors may occur in the sample data—as
it is data from real sensors—the confidence of all variables
before the error injection was calculated and stored. For
each low confidence found after the error injection, it
was compared with the recorded value. So, false positives
were counted only when new errors were detected. The
false positive rate (FPR) is calculated based on the num-
ber of injected errors, making it possible compare the
results of experiments made with different sizes if input
set and different numbers of injected errors. The formu-
las are EDR = (detected_errors×100)/injected_errors and
FPR = (false_positives × 100)/injected_errors.
The experiments results are shown on Fig. 5, with the

minimum confidence (γ ) varying from 20 to 90 in inter-
vals of 10, and α and β varying from 1.0 to 4.0 in a
step of 0.5, making a total of 392 evaluated combinations.
As explained before, a small value of β means that the
current reading can show only a little discrepancy from
the predicted one to be considered 100% correct. The
opposite is true for larger values of β . The α parameter
determines the width of a range of values where the con-
fidence decreases from 100 to 0%. The wider the range,
the slower the confidence decreases. So, small values of
α make the algorithm drop confidence very fast, and vice
versa. Finally, the γ parameter defines the confidence level

below which the algorithm tries to replace the read values
by the predicted ones, searching for a possible error. The
lower the value of this parameter is, the more “lenient” the
algorithm is with the investigation of possible errors.
The objective is to maximize the number of detected

errors and, at the same time, to minimize the number
of false positives injected. So, the best combination of
parameters will be the one that gets the biggest differ-
ence between these two results. Figure 5 shows the EDR
and FPR values obtained for every combination of the
three parameters. The highest EDR were obtained using
the most restrictive combination of parameters (β = 1.0,
α = 1.0, and γ = 90), detecting 94.2% of the injected
errors. But this combination also shows the highest FPR,
as high as 79.5% of the injected errors. This is expected
because any reading that deviates 1.1 times theMAE from
the model will be considered an error and tested against
the predicted value. The FPR decreases for smaller values
of γ . It also decreases as the values of α and β increase,
with FPR getting close to zero when both parameters are
4.0. The graphs of Fig. 5 show that average values for all
parameters show balanced results.
As the parameters can be individually adjusted for dif-

ferent scenarios and application needs, a reasonable start
point is setting α and β parameters to a value around
2.5 and γ to 50, and adjusting them until the desired
detection and false positive rates were obtained. As just

Fig. 5 α, β and γ influence on error detection rates and false positive rates—outlier errors
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three numbers must be adjusted, thinking on a distributed
environment as a WSN, it is necessary to broadcast a sin-
gle message to adjust the algorithm’s parameters on all
nodes, or on a subset of nodes of the same type. As the
MAE value is expected to be larger for models with highly
varying values, the parameters can also be set individu-
ally for these type of nodes to get a better tolerance to the
variance.

Error type coverage
A second set of evaluations was executed in order to iden-
tify the algorithm effectiveness on detecting the other
three types of errors defined by [4]: peak, stuck-at, and
noise. The error injections mechanism was adjusted to
generate several sequences of errors in the same data
chunks used in the first evaluation. Examples of the
injected errors and their correspondent confidence lev-
els are illustrated in Fig. 6. On these graphs, each type
of errors was injected twice. To better identify each error
type, they are marked on the graphs with different letters:
S for stuck-at errors, P for peak errors, and V for variance
(or noise) errors. The parameters used to create the graphs
of Fig. 6 were α = 2.5, β = 2.5, and γ = 50.
The peak errors are very similar to the outlier errors,

used in the first evaluation. So, the confidence level drops
as soon as the monitored values deviate enough from the
usual (predicted) values. Figure 6 shows that peak errors
are better detected than the stuck-at or variance errors.
This happens because peak errors generate values farther
from the expected ones. But in some situations, a peak
can make the monitored values go into the directions of
the predictions, mainly when there is some gap between
the real values and the predicted ones. When this hap-
pens, the values remain in the range with confidence high
enough, and the sequence may not be classified as an
error. The second peak of the upper graph in Fig. 6 illus-
trates this, as the sensors readings get various confidence
levels, from 0 to 80, when the peak error is occurring
(around sample 300).
The detection of the stuck-at errors is determined by

the data behavior. In the upper graph of Fig. 6, the
repeated value is close to the predictions, making the error
remain undetected. On the lower graph, however, as the
predictions followed the input from the correlated vari-
ables, the difference from the constant value increased
enough to make the errors be detected. This is reflected
by the assignment of different levels of confidence, from 0
to 100.
The proposed mechanism gets low accuracy in identi-

fying the variance error when the readings do not exceed
the thresholds defined by the α and β parameters. The
graphs of Fig. 6 shows that high variance errors (Vmarks)
that keep the values close to the correct ones are not
detected. Only when the noise produces values with larger

discrepancies, the confidence of the variable starts to
decrease. If the noise makes the monitored values fall too
far from the expected ones, the proposed solution will
detect them as it does with the outliers. The noise can be
an indicator of malfunction or interference, but while it
does not causes readings to be too distant from real val-
ues, the confidence attribution scheme will not classify
this kind of behaviors as an error. This kind of behavior
classification is not in the scope of this work. Solutions
of variance analysis can be used at the server to indicate
noise in a sequence of readings, indicating the need for
some maintenance. Noise errors can also be detected if
they produce readings outside the β × MAE threshold,
producing sequences of different, highly varying levels of
confidence. Again, this sensitiveness can be adjusted by
setting the α and β parameters.
The “stuck-at” is an error type that can show a differ-

ent impact on the monitored value confidence, depend-
ing on when it occurs and how long it lasts. When
the monitored variable “freezes” on a value close to the
normal values, and the last ones show only small vari-
ations, the error is not detected. This is a situation
similar to the noise error and is illustrated in the first
graph of Fig. 6. But when the normal values sequence is
ascending or descending—like temperature in the morn-
ing or in the late afternoon—then the difference will be
detected, and the monitored variable’s confidence will
fall in the same rate. This is well illustrated in the first
error labeled S on the lower graph of Fig. 6. Obviously,
if an error makes the readings to be stuck at a distant
value, then the algorithm will drop the sensor confidence
instantly.
The analysis of the results show that the algorithm can

identify errors in sequences that are greater than some
threshold and ignores errors that do not deviate too much
from the normal values of the sequence. It does not detect
noise and stuck-at error when they lay around the normal
readings. This types of errors are easily detected by algo-
rithms that use statistical analysis on a window of the N
last readings. This type of detection and classification is
out of the scope of this work. We are interested in identi-
fying errors—from failures or intentionally injected by an
intruder—that deviates from the correct values and could
lead to wrong decisions, e.g., in a cyber-physical system, as
well as labeling data with confidence levels to allow check-
ing against message corruption when data arrives on the
server.
The proposed algorithm labels every reading with an

confidence level, adjustable by the parameters. So, even if
not classified as an error by algorithm (falling bellow γ ),
every variation in the value of a sequence reflects in a vari-
ation in the confidence level assigned to it. A small (or
even 0) value of β and a reasonable value of α make every
different value be labeled with a different confidence level
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Fig. 6 Different error types injection

that can be used to identify noise and stuck-at errors at a
second stage, not covered in this work.
To compare the results obtained with different error

types, Fig. 7 shows the results for the combinations of
the algorithm parameters α and β , with γ assuming 20,
50, and 90. Other values of γ were omitted due to lack
of space. As already discussed, the EDR and FPR for the

stuck-at and variance errors are significantly lower than
for outlier (see Fig. 5) and peak errors. The peak errors
also show an EDR slightly lower than the outlier errors,
mainly by the fact that some peaks can produce values not
far enough from the predicted values, and consequently
not dropping the confidence enough to be detected as
an error. As these peaks last much more time, they have
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Fig. 7 Error detection rates and false positive rates for different types of errors

a more significant statistical impact that one outlier that
does the same. If the simulation is adjusted to produce
only large deviations when generating peak errors, the
results would be practically the same to the obtained with
the outlier errors. But this would artificially inflate the
EDR and would not follow the original definition of the
error type. The stuck-at and noise errors showmuch lower
EDRs, as the error values were mainly too close to the pre-
dicted values. They may cause variation in the confidence
assigned to the value while the error occurs, but are not

reported as an error as the confidence remains above γ .
This is the reason why γ = 90 associated with small val-
ues of α and β result in higher detection and false positive
rates for both type of errors.

Comparison with the hybrid fault detection
method
We compared our confidence attributionmechanismwith
the hybrid fault detection method proposed by [6], using
data from the SensorScope project [30]. We applied our
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mechanism to one of their datasets available online. The
dataset consists of environmental data collected at the
Grand Saint Bernard pass between Switzerland and Italy
in 2007 [31]. It contains samples of temperature, humid-
ity, and solar irradiation collected along 43 days with a
temporal resolution of 2 min. The results obtained by
applying our proposal to this dataset are compared to the
results obtained by the authors [6]. They selected ten sen-
sors among the most faulty ones to evaluate the accuracy
of fault detection and classification and also applied time
series analysis and neighbor voting algorithms to detect
four types of failure.
We first aligned the datapoints in time. Two sensors

that failed to produce data (their focus was on sensor
failure, ours on data confidence) were excluded from the
comparison. The resulting dataset contains 20180 data-
points. Subsequently, we manually classified discrepant
datapoints as faulty. After that, sequences with no faulty
data were selected at five different periods of the time
series, resulting in a training set of 6800 records. The fea-
ture selection procedure was applied next, identifying the
relationship among the variables across different sensors.
We built the ANNs as described in “Algorithm param-

eter evaluation” section and obtained the MAE for every
sensor. The models were then evaluated for every sensor
with average values: γ = 50, α = 2.5, and β = 2.5. A node
was considered faulty when the confidence reached 0. The
compared work counted errors by occurrence in each test
interval T of 30 minutes, no matter how long the error
remained. As our proposed algorithm evaluates each dat-
apoint individually, a direct comparison of error counts is
meaningless. So, the error detection rate (which is called
success ratio in their work) will be used for comparison. In
their work, neighbour voting (NV) and time series analysis
(TS)were combined to achieve the best results (NV ∪TS),
which is the basis for the comparison with our mechanism
summarized in Table 3.
The results show that for some sensors the EDR is sig-

nificantly lower than the compared technique. Inspecting
the data, it is possible to verify that the causes explained

Table 3 Compared algorithm evaluation

Sensor NV ∪ TS (%) Confidence attribution (%)

Sensor 6 97.4 75.1

Sensor 7 93.3 99.8

Sensor 9 94.1 90.7

Sensor 15 93.1 96.7

Sensor 17 91.8 93.4

Sensor 18 92.5 74.1

Sensor 19 92.5 83.9

Sensor 20 97.6 74.2

in “Error type coverage” section are present in the eval-
uated dataset. Taking as example sensor 18, it is visible
that the errors are mainly of the suck-at type, as shown in
Fig. 8. For clarity, confidence (red crosses) is only marked
at 100 (no error) and 0 (error) to not hide data lines on the
graph. The sensor reported −1 for a long time. As the real
temperature was around that value for a significant period
(around sample 3000), it was not detected as a faulty value
because it was in the range of acceptable values. Almost
all of the undetected errors are due to the fact that stuck-
at errors are not identified when they are close to the real
values. On sensors where mostly peak and outlier errors
occur, as for sensor 7, 15, and 17, the error detection
rate of our algorithm outperforms the compared solution.
Figure 9 shows the detection of this type of errors on sen-
sor 15. On the other hand, in [6] the authors demonstrate
that the peak errors (named drift by the authors) is the one
with lowest detection rates, reaching from 76.9 to 84.6% of
accuracy.
Other solutions described on “Related work” section

make their evaluations based on proprietary real or sim-
ulated WSN, so it was not possible to directly compare
results, as data could not be replicated to be used with our
algorithm.

Concept drift detection
In this section, we discuss the detection of concept drifts.
Once sensors may be monitoring dynamic environments,
the simulation models are subject to modifications in the
correlations between the readings of different sensors in
different instants. As described by [32], a concept is the
classification or prediction result of a vector of values α.
If the result changes over time, i.e., Pt(χ) �= Pu(χ), then
a concept drift occurs, as the same input set χ produces
different results at times t and u, and both are correct.
Similarly, [33] defines it as ∃χ : Pt0(χ , y) �= Pt1(χ , y),
meaning that the joint distribution of a set of input vari-
ables χ and the target variable y may vary from time t0 to
time t1.
Concept drifts are not easily detected as they may

be confused with long-lasting erroneous readings. Sev-
eral methods for concept drift detection were proposed,
mainly applying statistical analysis of errors and correla-
tions. The first attempt in concept drift detection was the
exponentially weighted moving average (EWMA) chart
method proposed by [34], which verifies the changes in
the moving average over the last N readings, with no
need to keep buffers. However, when applied to a single
time series, the algorithm classifies long error sequences
as concept drifts, so it is mandatory to first classify if the
readings are reliable, before applying the formulas. This
makes it harder to apply this method directly into the pro-
posed solution, as concept drifts may also be classified as
errors, or at least as readings with lower confidence.
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Fig. 8 Sensor 18 stuck at −1 for a long time

When a concept drift occurs, the predictors built at the
server with outdated data will not be able to correctly han-
dle that changes. The majority of the models will start to
assign lower confidence levels to their data. For example,
when the training is made with data obtained in summer
days—as in the experiment presented in this work—the
model assigns low confidence to relative humidity, ambi-
ent temperature, and barometric pressure, as they show
correlations slightly different in winter (Fig. 10). As shown
by the figure, the predicted values are clearly following the

sensor readings but are not close enough to be considered
correct.
At the server side—where enough computational power

is available—more elaborated algorithms can be used
to verify if some sequences are real concept drifts or
long lasting errors, like sensors slowly deviating their
readings from the correct ones. Models comparing read-
ings variations of each sensor and comparing them to
the variations in other sensors must be built, mixing sta-
tistical analysis and predictions results. These ensembles

Fig. 9 Sensor 15 with peak and outlier errors
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Fig. 10 General confidence drop on concept drift

can use some voting mechanism, for example, to decide
if a concept drift has occurred. Another solution is use
the outputs of all the different detection mechanisms and
build and train a classifier to verify if the data streams
should be considered errors or concept drifts.
We are evaluating the use of an algorithm that com-

bines the outputs of a drift detection method such as the
EWMA for the different available values. The idea is to
evaluate the behavior of the values and the confidence lev-
els of all correlated variables. The algorithm then has to
decide if a set of deviations, occurring for a long enough
period of time, is an error or a concept drift. We are also
investigating other drift detection methods suitable for
the given scenario.

Data confidence as trust mechanism
The proposed confidence attribution scheme has shown
feasible to be applied to resource-constrained devices, as
the model is not expensive in size to transmit and store
in the nodes of the WSN. Neither demands high com-
putational power to execute. The most power-demanding
tasks—feature selection, model building, updating, and
training—are performed offline, at powerful servers or on
the Cloud.
As the models are built on the server, they can be stored

to perform later verification to identify if data was adulter-
ated at the origin (the sensor node), when it is retransmit-
ted by intermediate nodes, or even by amalicious gateway.
Therefore, it increases the overall dependability of the
WSN data, as an attack have to occur in a coordinated way
on all correlated nodes.
If an intruder forges the values read by a sensor before it

enters the confidence attribution schema, it will be identi-
fied as faulty and get a low confidence level. The intruder
can also try to change a sensor value after the confidence
attribution. It can happen on the node, before the values
are transmitted, on an relay node or at the gateway. In
the last case, to be considered valid by the application and
start an incorrect actuation, the false value has to be trans-
mitted with high confidence attributed. Before sending

the actuation command, the application can recalculate
the confidence of the received value. It only has to apply
the algorithm with correlated sensors values as input and
check if the result is the same presented by the suspicious
node. If a wrong value is presented with a high confidence
value, it will not match the confidence calculated by the
application. As another side effect, most confidence levels
calculated by other nodes that used the false input will not
match. The difference will be even worse if the neighbor
nodes used the correct values in its calculations and the
value is altered afterward, as at the gateway.
To forge plausible incorrect values, an intruder has to

get access to all involved models and adjust the predicted
values and the confidence levels of all correlated values
that will be affected—directly or indirectly—by the forged
value. It would be computationally expensive and inviable
at the WSN level, due to the number of messages needed
to adjust and verify all involved values. It could be possible
at the gateway, but other intrusion detection techniques
would easily detect the extra processing and retransmis-
sions delays while the malicious software tries to calculate
the new confidences.

Conclusions
Message-exchanging protocols for data fault detection are
not suitable for wireless sensors networks due to resource
constraints. A new scheme for data fault detection is pre-
sented in this work, based on local predictors and listening
to the messages from correlated neighbors. The predic-
tion models are built and updated outside the WSN and
sent to the sensor nodes only when necessary, avoid-
ing communication overheads. Nodes can determine a
confidence level of the sensed value, comparing it with
the predictor’s output. The scheme can minimize the
interference of a faulty value on other nodes, correctly
identifying the defective node by assigning low confi-
dence to the incorrect values. The algorithm’s sensitive-
ness can be easily adjusted through the combination of
three parameters (α, β , and γ ) that can be broadcasted
over the WSN with very low overhead.
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Simulations shown that the proposed solution reaches
good accuracy levels in identifying nodes’ data faults and
its source. A fault is a value too far from the expected
correct value, based on other correlated observed values.
Parameters can be adjusted to get the desired algorithm
sensitivity or the balance between detection rate and false
positives. The solution can also be used to verify the
data integrity at the application, comparing models out-
puts with the received values at WSN gateways or at the
application servers. As any interference on the read values
and/or confidence levels can be compared to the output
of other model, the proposed mechanism adds an extra
authenticity and integrity level to the WSN.
As future work, efforts on the definition of a reli-

able change detection methods has to be made, in order
to select methods that can address the several aspects
involved in correctly identify the occurrence of concept
drifts. The results of our preliminary results shown that
the statistical and time series analysis on single data
streams have to be reinforced by comparing data from
different sources. It is expected that such ensembles can
reach better results in this task. On the predictors, the use
of Incremental Gaussian Mixture Network (IGMN) [35]
will also be evaluated, as that model is resilient to miss-
ing inputs. This feature can be useful in networks subject
to communication problems, in unreliable environments.
The integration of the proposed solution to a communica-
tion protocol will also be implemented and evaluated, in
order to measure the real impact on energy consumption
and the detection of possibly intrusion attempts in WSN
and CPS scenarios.
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