Mendes et al. Journal of the Brazilian Computer
Society (2019) 25:2
https://doi.org/10.1186/s13173-018-0083-1

Journal of the
Brazilian Computer Society

RESEARCH Open Access

VisminerTD: a tool for automatic @
identification and interactive monitoring of
the evolution of technical debt items

Thiago S. Mendes'*"T @, Felipe G. S. Gomes' T, David P. Goncalves', Manoel G. Mendonca'”,
Renato L. Novais®>” and Rodrigo O. Spinola®?

Abstract

Technical debt (TD) contextualizes problems faced during software evolution considering the tasks that are not
carried out adequately during software development. Software TD is a type of debt that brings a short-term benefit,
but which may have to be paid with interest later on in the software development life cycle. Its presence brings risks
to the project and can reduce its quality. It is worthwhile to have automatic mechanisms to monitor it, as TD
monitoring requires the analysis of large amounts of complex data. Therefore, the combination of software metrics
and code comment analysis, in the identification, and information visualization technigues, in monitoring, present
themselves as a promising strategy to manage TD. This work presents VisminerTD, a tool that allows the automatic
identification and interactive monitoring of the evolution of TD items by combining software metrics, code comment
analysis, and information visualization. To evaluate its applicability, a feasibility study was carried out considering JUnit
4 and Apache Ant software projects. The results indicated that VisminerTD can support software development teams
in monitoring TD items. In addition, a second case study was performed to assess the feasibility of the proposed tool
regarding its usefulness, ease of use, and self-predicted future use. The results provided positive evidence on the use
of the proposed tool, indicating (i) that it can be useful in supporting TD Identification and TD monitoring activities
and (i) that it can bring gains in terms of comprehensiveness and efficacy when evaluating the desirable time to
identify and monitor different types of debt. Given the current scenario characterized by limited options of tools that

contributing to a wider dissemination of the concept.

visualization

combine different information to support automatic identification and monitoring of the evolution of TD items in
software projects, VisminerTD can approximate the state-of-the-art and the state-of-the-practice in the TD area,

Keywords: Technical debt, Technical debt identification, Technical debt monitoring, Software evolution, Software

Introduction

The development of software systems is increasingly chal-
lenging, as they are getting bigger and more complex,
delivering more functionalities, and interacting much
more with other systems. The quality of software systems
that goes through evolution activities often decreases
over time when considering aspects such as their internal
structure, adherence to standards, documentation, and

*Correspondence: thiagosouto@ifba.edu.br

"Thiago S. Mendes and Felipe G. S. Gomes contributed equally to this work.
'Federal University of Bahia, UFBA, Av Adhemar de Barros, s/n, Instituto de
Matemdtica, 40170-110 Salvador, Brazil

Full list of author information is available at the end of the article

@ Springer Open

ease of understanding for future maintenance [1-3]. One
reason for this is that development activities are often car-
ried out under severe constraints of time and resources.
Due to these constraints, tasks need to be prioritized and
many of them are left behind, thus generating technical
debt (TD).

The concept of TD has helped professionals and
researchers to discuss those issues associated with soft-
ware evolution [4]. The concept of technical debt (TD)
contextualizes problems faced during software evolution
considering the tasks that are not carried out adequately
during software development. Software TD is a type
of debt that brings a short-term benefit (e.g., increased

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-018-0083-1&domain=pdf
http://orcid.org/0000-0003-1919-5349
mailto: thiagosouto@ifba.edu.br
http://creativecommons.org/licenses/by/4.0/

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

development speed or shortened time to market), but
which may have to be paid with interest later on in the
software development life cycle [4—6]. Non-execution of
tests, pending code refactoring, and outdated documenta-
tion are examples of TD. More recently, Avgeriou et al. [7]
defined TD as “TD is a collection of design or implemen-
tation constructs that are expedient in the short term, but
set up a technical context that can make future changes
more costly or impossible. TD presents an actual or con-
tingent liability whose impact is limited to internal system
qualities, primarily maintainability and evolvability” The
use of such TD concept facilitates the understanding of
the costs incurred unintentionally or by decisions taken
during the software development life cycle [8, 9].

It is common for a software project to incur TD dur-
ing the development process. However, its presence brings
risks to the project and hinders its management since
managers will have to decide if the debt will be paid
and, if so, which debt should be paid and when. Effects
of TD can be noticed in different stages of software
development due to different types of debt [10]. Its pres-
ence makes it difficult to add new functionalities, creates
a favorable environment for the occurrence of defects,
impacts on external quality, and reduces the maintainabil-
ity of the code [11]. TD identification strategies can be
performed either manually, automatically, or computer-
assisted. According to Zazworka et al. [12], it is rec-
ommended to combine two approaches (manually and
automatically). However, there are still few options that
combine different information extracted by calculating
software metrics, code smells, static code analysis, and
source code comment analysis to support automatic iden-
tification and monitoring of the evolution of TD items
in software projects [13]. Another aspect to be consid-
ered is consider using software visualization techniques to
support the identification and management of TD items
because such techniques can be used to support tasks of
understanding, maintaining, and evolving software sys-
tems [14, 15]. However, these techniques have only been
used in a very limited way with this purpose so far [10].

This work presents VisminerTD!, a tool whose goal is
to support the activities of identification and monitoring
of TD using software visualization resources. VisminerTD
implements a new TD identification strategy by com-
bining information extracted from software metrics and
source code comments, monitoring the evolution of TD
items through different versions of the software.

VisminerTD uses software metrics, duplicated code
occurrences, style problems, ASA issues, and code com-
ments to find TD indicators. The combined analysis of TD
indicators allows development teams to identify more pre-
cisely TD items in the source code, calling their attention
to specific parts of the project. Once a TD item is detected,
VisminerTD allows the user to follow the evolution of that

Page 2 of 28

item and its indicators over the project life cycle. Its visual
metaphors support the monitoring of the evolution of TD
items through the versions of a software, identifying when
they incur, and if their indicators are increasing or if they
are being paid off.

To evaluate the proposed tool regarding its support to
TD identification and monitoring activities, we performed
two feasibility studies. In the first study, two well-known
open-source projects were used, JUnit 4 and Apache Ant,
both mature, large, and with many contributors. The
results of the study indicated that the tool can support
software engineers in monitoring debt items. The study
also confirmed that the current version of the tool can
process information extracted from large software project
repositories in a few minutes (about 20 min for two large
repositories), performing tasks of repository mining and
metrics calculation. In the second study, the proposed
tool was evaluated through a feasibility study by using the
Technology Acceptance Model (TAM) [16]. The results
provided positive evidence on the use of VisminerTD and
indicated that it is capable of supporting TD identification
and TD monitoring.

In addition to this introduction, this article has six more
sections. The “Background” section presents background
information on TD, metrics, comments, and software
visualization. “VisminerTD” section describes the archi-
tecture and functionalities of VisminerTD. The “Feasibil-
ity study I” section discusses the first feasibility study.
The “Feasibility study II” section details the planning,
execution, and results of the second case study. Then,
related works are analyzed in the “Comparison to related
works” section. Finally, the “Final remarks” section con-
cludes the paper and indicates some future work.

Background

This section provides an overview of relevant background
on TD and reviews past work on TD indicators con-
sidering software metrics, code smells, ASA issues, and
source code comments. It closes by discussing software
visualization in the context of this work.

Technical debt

TD is seen as an important part of software management
[11]. According to Seaman and Guo [4], the management
of TD can center on a TD list. This list should contain
TD items that represent tasks that were left undone, but
that run a risk of causing future problems if not com-
pleted. The main component of the debt, the principal,
refers to the cost to eliminate the debt (i.e., the effort
required to complete the task). Depending on the type
of TD, this can translate into different kinds of activities,
such as updating outdated documentation, refactoring
code that is hard to maintain, or defining new test cases
to improve their coverage. The second main component

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

of TD is interest, which is composed of two parts: (i)
the interest amount is the potential penalty in terms of
increased effort and decreased productivity that will have
to be paid in the future as a result of not completing
these tasks in the present [4], including the extra cost
of paying off the debt later, as compared to earlier, and
(ii) the interest probability, because TD will not always
bring negative impacts on future project activities. For
example, the higher the probability that the artifact that
contains the debt will undergo maintenance, the higher
the probability that the interest will negatively impact the
project.

Alves et al. [10], through a systematic mapping study,
identified 15 different types of debt that could affect
the software development and the relation with their
respective indicators. The focus of this work is on
supporting the identification and monitoring of nine
types of debt as listed below. According to Alves et al.
[10], these types are among the most common ones in
the area:

e Architecture debt: refers to problems encountered in
the software architecture, for example, violation of
modularity, which can affect architectural
requirements such as performance and robustness.
Normally, this type of debt cannot be paid off with
simple interventions in the code, requiring more
extensive development activities [6, 17].

e Build debt: refers to issues that make the build task
harder, and unnecessarily time consuming, such as
when the build process needs to run ill-defined
dependencies and the process becomes unnecessarily
slow. It also incurs when the build process involves
code that does not add customer value [18].

e Code debt: refers to problems found in the source
code that can negatively affect the legibility. Usually,
this debt can be identified by examining the source
code for issues related to bad coding practices [19].

e Defect debt: refers to known defects, usually
identified by testing activities or by the user and
reported on bug tracking systems, that the
Configuration Control Board (CCB) agrees should be
fixed but, due to competing priorities and limited
resources, have to be addressed at a later time [20].

® Design debt: refers to debt that can be discovered by
analyzing the source code and identifying violations
of the principles of good object-oriented design (e.g.,
very large or tightly coupled classes) [5, 21].

e Documentation debt: refers to problems found in the
project documentation such as missing, inadequate,
or incomplete documentation of any type [21].

e DPeople debt: refers to people issues that, if present in
the software organization, can delay or hinder some
development activities. An example of this kind of

Page 3 of 28

debt is expertise concentrated in too few people, as
an effect of delayed training or hiring [22].

® Requirement debt: refers to trade-offs made with
respect to what requirements the development team
needs to implement or how to implement them.
Examples of this type of debt are partially
implemented requirements or implementations that
do not fully satisfy a non-functional requirement [6].

e Test debt: Refers to issues found in testing activities
that can affect the quality of those activities.
Examples of this type of debt are planned tests that
were not run, or known deficiencies in the test suite
(e.g., low code coverage) [21].

The next section discusses indicators that can be used
to automatically find TD items.

Technical debt indicators

TD indicators allow to discover technical debt items by
analyzing different artifacts created during the develop-
ment of a software project. Most TD indicators proposed
in the literature can be related to calculation of software
metrics [10, 13].

Metrics are used to ensure control over software
projects, products, and processes [23]. More specifically,
they allow the assessment of attributes, features, or char-
acteristics of software entities, making it possible to char-
acterize, monitor, and control them. In the context of
object-oriented programming, the set of metrics proposed
by Chidamber and Kemerer [24] makes it possible to char-
acterize, for example, the size, complexity, and coupling of
the code.

In the literature, there are many studies that address the
detection of code smells or code anomalies through code
metrics as a way to identify problems in the source code
[25]. Code smells emerge from choices, in the design of a
system, that do not comply with widely accepted princi-
ples of good design [12]. They are an initial indication that
there may be a serious problem in the system [26]. These
problems may hinder the software evolution and main-
tenance process and lead to code refactoring [27]. Code
smells are a well-known indicator of the presence of code
and design debt [10].

Automatic Static Analysis (ASA) tools can also be used
in the TD identification activity. ASA tools allow the
analysis of source code in search for violations of good
programming practices that can cause failures or hin-
der some quality dimension of the software (for example,
its maintainability or efficiency). Some of these viola-
tions can be removed through refactoring to avoid future
problems [12]. As an example, FindBugs [28] is a static
open-source code analyzer that detects possible bugs in
Java programs. Potential errors are divided into categories,
and the tool provides tips to the developer about their

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

possible impacts. Checkstyle is another ASA tool [29]. It is
used in software development to verify if the source code
complies with coding rules.

Source code comments are another valuable resource
to help understand a software system [30]. They are
widely used by maintainers involved in evolution manage-
ment. Comments can describe issues that require future
work, or indicate emerging issues and decisions that need
to be taken on them. They facilitate human readability
and provide additional information that summarizes the
developer context [31]. Recently, some work has been per-
formed considering the identification of TD items through
the analysis of code comments [31-34]. In Farias et al.
[33], the authors presented eXcomment, a tool for identi-
fying and classifying TD through code comment analysis.
The tool is based on text mining, a technology to extract
useful information from large amounts of unstructured
textual data. The tool uses a contextualized vocabulary
composed of expressions and terms that locate TD indica-
tives in the source code [31].

As discussed above, software metrics, ASA issues, and
code comments have been used as TD indicators. How-
ever, as far as we know, these indicators have been used
mostly in isolation during the identification of TD items.
VisminerTD, the tool presented in this paper, makes use
of a new strategy that combines information generated by
software metrics, code smells, style problems in Java code,
ASA issues, and source code comments to improve the
identification of TD items.

Software visualization

Software evolution of real projects with many develop-
ers commonly produces a large amount of data. Daily,
developers have to perform maintenance tasks to keep
the software up-to-date. A prerequisite for those mainte-
nance activities is the software comprehension. Unfortu-
nately, this is not a simple task: developers have to deal
with several software modules, which are, in many cases,
comprised of thousands of lines of code.

To deal with comprehension in this complex scenario,
researchers and practitioners have been using software
visualization (SoftVis). SoftVis can be defined as the map-
ping from any kind of software artifact (lines of code,
method, class, etc.) to graphical representations [35, 36]. It
is very helpful since it transforms intangible software enti-
ties and their relationships into visual metaphors that are
easily interpreted by human beings [37].

The use of information and software visualization tech-
niques [38, 39] have been used in software engineering
as a possible solution to facilitate the understanding of
the software, supporting the tasks associated with the
maintenance and evolution of systems [40]. Software visu-
alization uses visual resources to facilitate the understand-
ing of information extracted from software metrics by

Page 4 of 28

software engineers [41]. Consequently, software visualiza-
tion techniques are also a promising way to deal with debt
items.

Researchers proposed different classification tax-
onomies for SoftVis. Diehl [39] divides software
visualization into visualizing the structure, behavior, and
evolution of the software. Other authors classified the
visualization based on the type of the metaphors it uses to
represent software [42, 43]. Software can also be visually
analyzed from different perspectives [44].

In the context of software evolution, it is also important
to consider visual strategies of analysis, that is defined as
how the evolution is visually presented for analysis [45].
The strategy can allow the user to navigate in the history
of a software element, making it possible to compare two
versions of software modules, comparing two versions of
a class, for example. Software evolution visualization tools
should consider the combined use of different strategies
as a promising approach [45].

In the next section, VisminerTD is presented, a multi-
perspective and multi-visual strategy of analysis tool that
combines information from software metrics, code smells,
ASA issues, and source code comments to identify TD
and allow the use of software visualization techniques to
monitor existing debt items.

VisminerTD

VisminerTD is an open-source web tool that has multi-
ple visual perspectives and different visual strategies of
analysis to support development teams in activities of
identifying and monitoring the evolution of TD items.
VisminerTD runs on top of RepositoryMiner? (RM). The
RM is responsible for metrics extraction and comments
from source code repositories [46]. Figure 1 presents a
component and connector architectural view of the whole
solution, considering both VisminerTD and RM. They are
further explained next.

RepositoryMiner

As previously discussed, all data presented in Vismin-
er'TD are extracted and analyzed by the RM, which is an
extensible tool for mining software repositories to sup-
port automatic identification of TD. Developed as an open
source project using Java and MongoDB [47], the main
purpose of RM is to perform analysis of software repos-
itories, through the extraction and combination of data
related to software evolution. RM is distributed in the
form of a JAR (Java ARchive) and provides an API (Appli-
cation Programming Interface), so that its features can be
easily accessed through Java applications.

The RM mining process bases on the list of TD indi-
cators defined by Alves et al. [10] (e.g. code smells, ASA
issues, style problems in code and software documenta-
tion issues). This means that the extracted data is related

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 5 of 28

g
£
&
S
=

RM FindBugs

i
g
-
Q
(1)
£
(=}
S
[

RM eXcomment

MongoDB <

Fig. 1 VisminerTD architectural view. Presents a component and connector of VisminerTD architectural view

1
TDAnalyzer :
1
1
= I
==0
" y Bootstrap = = — K
< d Responsive Ul i .
Q2 P TDEvolution :
[} -—_ 1
: [rmem - P -
[a) g — . |
[1
S 1
L 1
: il
é’ = 1
1

0 e TDManagement
S HighCharts i
- = - 1
- = = 1
md - g | == 1
- - - 1
= IF = -
Perspectives :

to the set of metrics, rules, and other information needed
by the indicators. In this sense, the main RM features are:

e Mining local (e.g., projects stored on GIT) and
remote software repositories (e.g., issues and
milestones stored on github.com)

e Calculating 19 software metrics: AMW (Average
Method Weight), ATFD (Access To Foreign Data),
CYCLO (McCabe’s Cyclomatic Number), FDP
(Foreign Data Provider), LAA (Locality Attribute
Accesses), LOC (Lines of Code), LVAR (Number of
Local Variables), MAXNESTING (Maximum
Nesting Level), MLOC (Method Lines of Code),
NOA (Number of Attributes), NOAM (Number of
Accessor Methods), NOAV (Number of Accessed
Variables), NOM (Number of Methods), NOPA
(Number Of Public Attributes), NProtM (Number of
Protected Members), PAR (Number of Parameters),
TCC (Tight Class Cohesion), WMC (Weighted
Method Count), and WOC (Weight Of a Class)

e Detecting seven types of code smells: brain class,
brain method, conditional complexity, data class,
feature envy, god class, and long method

® Detecting duplicated code using the Copy/Paste
Detector (CPD) functionality of the PMD tool [48]

e Detecting possible defects in Java projects through
static code analysis using the FindBugs tool [28]

e Detecting style problems in Java code using the
CheckStyle tool [29]

e Detecting comments in Java code that contain some
indication of the existence of TD items using the
eXcomment tool [33]

e Detecting nine TD types: architecture, build, code,
design, defect, documentation, requirements, people,
and test

The extraction of the metrics and code smells was
implemented considering the definitions found in Fowler
[26] and Lanza and Marinescu [25]. After the mining pro-
cess, the data is stored in a MongoDB database. Fig. 2
presents a simplified view of the RM database model.

VisminerTD

VisminerTD uses the data processed by RM to visu-
ally support TD identification and monitoring. Vismin-
erTD consists of two modules: VisminerTD-Client and
VisminerTD-Service. VisminerTD-Client is a web appli-
cation developed using Angular [49], Bootstrap [50], and
HighCharts [51]. Whenever it is necessary to search
for some information mined by the RM, VisminerTD-
Client sends an HTTP request to VisminerTD-Service,
passing the desired action and necessary parameters.
VisminerTD-Service was developed as a REST (Represen-
tational State Transfer) service using Node.js [52], Express
[53], and Mongoose [54]. The service receives the request,
filters the action to be taken, and obtains/modifies the
database information. VisminerTD-Service returns the
request data, using JSON specification, which is used
by VisminerTD-Client to process and present them. The
amount of data regarding the identification and monitor-
ing of TD is large, so, VisminerTD uses software visualiza-
tion techniques to reach its goal. We used HighCharts to
develop the set of views available in VisminerTD. Those
views are explained next.

Mendes et al. Journal of the Brazilian Computer Society

(2019) 25:2

Page 6 of 28

checkstyle_audit

rm_code_analysis_report

rm_code_analysis

i

4

rm_reference

s N

findbugs_bugs_analysis
J

excomment_comment gr
J

rm_repository

rm_remote_issue

\

//\

pmd_cpd_analysis

7

A

rm_remote_milestone
J

rm_commit

J

rm_technical_debt_report

rm_technical_debt

i

Fig. 2 RepositoryMiner database. Simplified RepositoryMiner database model view

VisminerTD views
To support the identification and monitoring of TD items,
VisminerTD consists of the following set of views: Home
View, Sidebar View, TDAnalyzer View, TDEvolution View,
and TDManagement View. The first two views are related
to the configuration of the environment. The last three
views are responsible for the identification and monitor-
ing of technical debt.

The Home View (Fig. 3) shows a set of instructions
about the general features of the tool. The Sidebar View
(left side of Fig. 3) allows the selection of the repository

to be analyzed, as well as their respective versions, and
access to the tool modules. RM extracts the presented ver-
sions from the selected software repository. Only selected
versions will be considered by VisminerTD.

TDAnalyzer View

The TDAnalyzer View allows the identification of TD
items. It uses as input the RM extracted data (e.g.,
code smells, style problems in Java code, ASA issues,
source code comments) as debt indicator information.
The TDAnalyzer shows the TD items detected (Fig. 4).

VisMinerTD

A
(¢} team in its activities of identifying and monitoring the evolution of TD items.

@ Repositories VisminerTO:
* 19 Software Metrics
* 7Code Smells
* Duplicate code occurrences

* Style problems in Java code
* ASAissues
* 97D Types

Analyzing, Identifying and Confirming TDs

you to take the decision to confirm or reject the TD item.

TDEvolution

changes occur that can positively or negatively affect the maintenance of the project.

Indicators and TDs.

VisminerTD is a tool which allows automatic identification and interactive monitoring of the evolution of Technical debt (TD) items. VisminerTD offers a set of visual perspectives to support the development

This tool displays information about the structure and evolution of software projects from metrics and comments extracted from source code repositories. See below some of the information available on

On the sidebar, select the repository, then select all the versions you want to analyze. Click on the button "Analyze", so you can be redirected to TDAnalyzer perspective to see the TD items identified.

Keep in mind that the items are identified as possibly having a TD. You need to confirm or reject the presence of TD in the items. On TDAnalyzer, you can find a detailed description of the indicators found to help

TDEvolution allows you to observe how the presence of TD behaves in the different versions of the T
software analyzed previously. This information makes it possible to realize in which moments

Different features are used to compare the versions, such as: Number of Commits, Classes,

Fig. 3 VisminerTD Home view. View that shows a set of instructions about the general features of the tool

is the module
through the use of 3 panels:

to support in the management and monitoring of TDs

TO DO: items that had the debts confirmed, but has not yet been paid.
DOING: all TDs that are being paid at the moment.

DONE: debts that were paid previously.

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 7 of 28

TD Analyzer

l2 TD Evolution

Y Filters

Technical Debt Indicators Checked

Select Fields v Any option

Filename

Intentional

Any option

£ junit4 - 117 Itens Found

Version: 4.12
4.12

Confirm All from Version Confirm All from Filter

SimpleTest

| cooe oear | oesicu peer |
 coo cus|

ParameterizedTestTest

TestResult

'UNKNOWN DEBT
COMMENT ANALYSES UNKNOWN DEST || COMMENT ANALYSIS DEFECT OLBT

ComparisonFailure

[ocrecr ocor | unkwown o |

MultiCategoryTest

[coococr | unxnownocor | osicwocr |
[coocon s misir fovmcsioco]

H2345 .

Fig. 4 TDAnalyzer perspective. Perspective that allows the identification of TD items

ParameterizedTestMethodTest

13 Next »

Initially, the user has to choose which versions of the soft-
ware they want to analyze through the “Version” field.
Remember that, only the selected versions in the Sidebar
View are available in this field. After choosing a version,
all TD items will immediately appear below, in the form of
cards (Fig. 4).

In addition to viewing all TD items for a version, the
user can also use filters in the Filters box (Fig. 4, top) to
refine the search, such as: (i) Technical Debt Indicators:
to select the items according to the indicators found. The
default shows all of them; (ii) Checked: to choose items
that have been marked as checked, unchecked or both;
(iii) Intentional: to select TD items that are intentional,
unintentional, those that are not sure of intent or with any
value; and (iv) Filename: to search for TD items by file
name. The user can combine the filters if necessary.

The card contains the name of the file, the type(s) of
debt, and the name of the TD indicators identified. The
TD types on the cards have their colors set according to
their status. The possible statuses are: (i) Not Analyzed
(gray); (ii) False Positive (green); (iii) 7o Do (red); (iv) Doing
(yellow); and, (v) Done (green).

The user can confirm or not each TD item identified
automatically by RM. It can be done one by one, using the
TD form (explained below), confirm all items indicated for
a given version (“Confirm All from Version” button), or
for all items according to the selected filters (“Confirm All

from Filter” button). In any case, the VisminerTD changes
the status of the TD types from “Not Analyzed” to “To Do”.

The TDAnalyzer has a detail-on-demand view where
the user can analyze detailed information of a TD item.
The user can access the detail-on-demand view by clicking
on the TD item name (i.e., the file name). The detail-on-
demand view is composed of eight pages: TD Form, TD
Timeline, Metrics Graph, Code Smells, FindBugs, Check-
Style, CPD, and eXcomment. These pages bring extra
information about the identified TD indicator, allowing
the user to decide if that debt should be considered a
problem or not.

TD form In this page, the user has access to a form that
allows the visualization and edition of information perti-
nent to the management of the TD item (Fig. 5). The con-
struction of this form was based on the study of Guo et al.
[55], which addresses the management of TD in software
projects. The TD form contains the following fields: (i) ID:
hashcode that uniquely identifies the TD item detected;
(ii) Source: the file path in the repository; (iii) Responsi-
ble: the name of the person responsible for the analysis
of the TD item; (iv) Checked: indicates whether the TD
item has already been analyzed; (v) Description: general
notes/observations with relevant information; (vi) Debt
Type Status: for each type of TD identified indicates its
status, and may have the following values: Not Analyzed

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 8 of 28

TDTimeline MetricsGraph ~ CodeSmells FindBugs

5b2b272fb8asf904d312d3c4

Source

src/test/java/org/junit/tests/running/classes/ParameterizedTestTest.

java P
Responsible

Thiago Souto
Checked

Yes v
Description

ParameterizedTestTest

Fig. 5 TD form page. Page that allows the visualization and edition of information pertinent to the management of the TD item

CheckStyle CPD ExComment
Code Debt Status
’ Done v

Design Debt Status

To Do v
Intentional
Not sure v

Principal (min)

30

Interest Amount(min)

60

Interest Probability (%)

25

Priority

Low v

Save

(not yet checked, it is the default value); False Positive (the
item is not a TD), To Do (it is a TD to be paid), Doing (TD
is being solved) and Done (TD has already been resolved);
(vii) Intentional: indicates whether the TD item was inten-
tional; (viii) Principal: the estimated amount of time (in
minutes) required for correction; (ix) Interest Amount:
the estimated amount of time (in minutes) required for
correction in production code (in other words, in the
future); (x) Interest Probability: indicator (percentage) of
the chances of paying interest in the future; and finally, (xi)
Priority: correction priority (high/medium/low) indicator
of the item.

TD Timeline In this page, the user can get an insight into
the evolution of the TD item across the various versions
of the software (Fig. 6). The analysis can be performed
from the initial versions of the software to the current
version being analyzed (selected in the “Version” field in
TDAnalyzer).

All'TD indicators identified in the file in each of the soft-
ware versions are displayed in the timeline. For each ver-
sion, it presents its name, the TD types (colored according
to their status in each version), and the indicators with
their respective amounts of occurrences. A circle just
below the name represents a comparison of that version
with the previous one considering the amount of TD indi-
cators. A gray circle means that the number of indicators
remains the same as the previous version, a red circle
means that TD indicators increased from one version to
another, and the green color indicates that the number of
indicators has decreased.

Metrics Graph The Metrics Graph page presents a line
graph that shows the evolution of some of the metrics
used to indicate TD throughout software versions (Fig. 7).
Since a file can consist of one or more classes, the user
can filter the class (“Classes” field) and which metric to
display (‘Metrics’ field). The metrics supported so far are

Mendes et al. Journal of the Brazilian Computer Society

(2019) 25:2

Page 9 of 28

Metrics Graph Code Smells FindBugs CheckStyle CPD ExComment

uniown st] pesicu ot |
[feon cunss | 1]

CODEDEBT UNKNOWNDEBT DESIGN DEBT

COMMENT ANALYSIS UNKNOWN DEBT | 4 | GODCLASS | 1

= =
4 O ©O
= I
(= [

UNKNOWN DEBT

COMMENT ANALYSIS UNKNOWN DEBT | 2

UNKNOWN DEBT

COMMENT ANALYSIS UNKNOWN DEBT | 2

UNKNOWN DEBT

‘COMMENT ANALYSIS UNKNOWN DEBT | 2

=~
e

4,

UNKNOWN DEBT
COMMENT ANALYSIS UNKNOWN DEBT | 2

UNKNOWN DEBT

COMMENT ANALYSIS UNKNOWN DEBT | 2

Fig. 6 TD Timeline page. Page that shows the evolution of the TD item across the various versions of the software

the ones related to classes: AMW, AFTD, LOC, NProtM,
NOA, NOPA, NOM, NOAM, TCC, WOC, and WMC.
The Metrics Evolution view shows analyzed data from
the first version of the software to the version being ana-
lyzed. In this way, the user can analyze the evolution of all
the calculated metrics and verify in which version there
were changes in the values of the metrics. This visualiza-
tion uses a temporal overview strategy [45], which shows
several versions of software at the same time.

Code Smells The Code Smell page allows the user to
view the code smells detected in the file (Fig. 8). The
user can select classes (“Classes” field) and methods
(“Methods” field). Then, the Code Smell view displays

the metric values (or code smells, if applied) for each of
the detected code smells. Only the classes and methods
affected by at least one smell are displayed in the selection
fields.

FindBugs This page (see Fig. 9) allows the user to visu-
alize the information about possible bugs found by the
FindBugs tool. VisminerTD shows each possible bug iden-
tified and its associated information (class, field, method,
local variable). We also have other related information: (i)
Rank: refers to the bug rank, the potential bugs are clas-
sified into four ranks: (a) scariest, (b) scary, (c) troubling,
and (d) of concern, giving the programmer a hint about
the impact or severity of the bug; (i) Priority: refers to

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 10 of 28

TestCase
TD Form TD Timeline Code Smells FindBugs CheckStyle CPD ExComment
Classes
junit.framework.TestCase v
Metrics
LoC v
Metrics Evolution
junit.framework.TestCase
600
500 /
400 /
g Loc
2 300
b)
200
100
r4.6 r4.7 r4.8 r4.9 r4.10 r4.11 r4.12
Versions
Fig. 7 TD Metrics Graph page. Page that presents a line graph to show the evolution of some of the metrics used to indicate TD throughout
software versions

the priority of the problem resolution. The higher the pri-
ority the greater the impacts of the bug on the system;
(ili) Type: the bug type. There are currently 425 classified
bugs arranged in several categories; (iv) Category: the cat-
egory of the bug, so far the categories are: “bad practice’,
“correctness’, “experimental’; “internationalization’, “mali-
cious code and vulnerability’, “multithreaded correctness’,
“performance’; “security” and “dodgy code”; (v) Descrip-
tion: a detailed description of the bug and its impact; and
(vi) Message: a message to help the developer to solve the
problem, usually presenting the location of the problem,
and sometimes some tips on how to solve it.

CheckStyle This section shows the information
extracted from the Checkstyle tool (Fig. 10). Through this
page, the user can visualize the following information: (i)
Line: the line where the problem occurred; (ii) Column:
the column where the problem occurred, if it is zero,
consider the entire line; (iii) Severity: the severity of the

problem which may be: “error’; “ignore’, “info’, and “warn-
ing”; (iv) Checker: the name of the rule used to identify

the problem; and finally (v) Message: a message describing
the violation in detail.

CPD This page shows all detected PMD/CPD duplicated
code occurrences per file (Fig. 11). The duplication occur-
rences can be found within the same file or across different
files in the project, where each duplication occurrence
represents a duplicated segment of code. At the top of
the screen (in “Total Duplication” field), the percentage of
duplicated file is shown. Duplicate occurrences are shown
below. The following information about occurrences is
also provided: (i) Tokens Threshold: refers to the mini-
mum amount of duplicate tokens present in a segment
to consider it as duplicate; (ii) Token Count: refers to the
number of duplicate tokens present in the occurrence; (iii)
Language: the programming language considered for ver-
ifying duplicity; (iv) Occurrences: refers to the number of
different files and/or sections of the same file where the
duplication was found, and for each section, the fields
below are shown; (v) Filename: the path of the file that
contains the duplication; (vi) Begin Line: the line on which

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 11 of 28

TD Form TD Timeline Metrics Graph FindBugs

Selecta class

CheckStyle CPD ExComment

org.apache.tools.ant.taskdefs.Javadoc

BRAIN CLASS

BRAIN METHOD [

GOD CLASS
o &

Select a method

LONG METHOD

Locl8

BRAIN METHOD

cvuo

COMPLEX METHOD

oo

ocl8

parsePackages(java.util.List<java.lang.String>,org.apache.tools.ant.taskdefs.Path) v

Fig. 8 Code Smells page. Page that allows the user to view the code smells detected in the file

the duplicate portion begins; (vii) End Line: the line on
which the duplicate portion ends; (viii) Line Count: the
amount of duplicate lines; and (ix) Duplication: is the per-
centage of that duplicate stretch to the file; in other words,
it is the ratio of the size of the stretch to the size of the file,
where we consider size as the amount of characters.

eXcomment This page (Fig. 12) displays the list of com-
ment information from the eXcomment tool presented in
[31]. The user can view the following information regard-
ing a comment: (i) Comment text: content of the comment
in the source code, for example, “// ALL: Review all callers
to make sure that they localize the title”; (ii) Class/Method:
class and, in some cases, the name of the method where
the comment is located; (iii) Pattern: set of word classes
and TD code tags and software engineering terms (e.g., SE
nouns, verbs, adverbs, adjectives, and tags), which led to
the identification of that comment as a TD item, for exam-
ple, “TODQ’, “Temporary’, “Workaround’, and “Bug”. In
a comment, there may be one or more patterns identi-
fied; (iv) Theme: set of vocabulary themes related to TD
contexts, such as “Bad coding practices” and “Inadequate

solution” It is important to note that a pattern can be
related to more than one theme. The list of themes was
created based on the list of TD indicators proposed by
Farias et al. [33] and Alves et al. [10]; (v) Total Score:
value calculated based on the occurrence and degree of
importance of the patterns found in the source code
comment. Patterns with larger scores are more likely to
indicate TD items than patterns with smaller scores; and
(vi) TD Type: TD type found based on the patterns and
themes found, expressed as architecture debt, build debt,
code debt, defect debt, documentation debt, design debt,
requirement debt, test debt, or unknown debt.

As could be observed, TDAnalyzer has several fea-
tures to support the identification of TD. Different pages,
some of them with specific visualizations, help the user to
decide the existence of a TD, by confirming it or not. Both
TDEvolution and TDManagement benefit from the users’
decisions while using TDAnalyzer.

TDEvolution View
The TDEvolution View allows the understanding of how
software is evolving over time regarding identified TD

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2 Page 12 of 28

LineOrientedOutputStreamRedirector

TD Form TD Timeline Metrics Graph Code Smells CheckStyle CPD ExComment

Field:

Local
Variable:

Method: <static initializer for
LineOrientedOutputStreamRedirector>()

Class:
org.apache.tools.ant.util.LineOrientedOutputStreamRedirector
Rank: Of Concern Priority: High Type: DM_DEFAULT_ENCODING Category: 118N
Description: Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default
platform encoding is suitable. This will cause the application behaviour to vary between platforms. Use an alternative APl and specify a charset

name or Charset object explicitly.

Message: Found reliance on default encoding: String.getBytes().

Class: org.apache.tools.ant.util.LineOrientedOutputStreamRedirector Field: Method: processLine(String) Local Variable:

Rank: Of Concern Priority: High Type: DM_DEFAULT_ENCODING Category: 118N

Description: Found a call to a method which will perform a byte to String (or String to byte) conversion, and will assume that the default
platform encoding is suitable. This will cause the application behaviour to vary between platforms. Use an alternative APl and specify a charset

name or Charset object explicitly.

Message: Found reliance on default encoding: String.getBytes().

Fig. 9 Findbugs page. Detailing of information found by Findbugs

items (Fig. 13). Using this view, the user can visualize dif-
ferences between two selected versions and identify when
positive or negative changes occur and whether they affect
the project evolution or not. TDEvolution uses a differen-
tial absolute strategy [45], which compares two versions of
software at a time (Fig. 13, top).

Among the information that can be compared from
one version to another, we have the number of commits,
source files, indicators (sum of the quantities of TD indi-
cators found), and debts (sum of the quantities of TD
types found) identified so far. We used a Stacked Column
view to illustrate the evolution of TD throughout the ver-
sions. In addition to the comparison between two selected
versions, TDEvolution View also shows the sum of the
quantities of TD types found for each one of the versions
between the two selected versions (Vertical bars at the
bottom of Fig. 13). In the case of Fig. 13, the slider is placed
for two subsequent versions, therefore, only two verti-
cal bars are presented. This temporal overview strategy
[45] view helps to analyze the evolution of the quantity of
debts in various versions of the software separated by their
types. The Stacked Column view divided by TD types
helps a lot to compare releases.

This view only shows the count of TD types with status
“To Do, “Doing’;, and “Not Analyzed” The status “Done”
and “False Positive” are not considered; this way the user
can see the amount of TD left behind. Each color in the
graph represents a type of TD, where the amount of occur-
rences are shown in its respective color (box), and above
each bar, the sum of occurrences of all TD types in the
version are displayed. To control the range of versions,
the user can use a slider above the graph that goes from
the oldest to the newest version of the software, from the
left to the right.

Therefore, TDEvolution view helps users to monitor the
evolution of TD in their projects.

TDManagement View

The TDManagement View is a module also responsible
for assisting in TD monitoring (Fig. 14). The TD items are
presented using the Kanban concept [56] with three pan-
els (TO DO, DOING, and DONE). Each TD type of the
file, identified by the type and name of the file, is repre-
sented as a card. In this view, the user can visualize the TD
items of the project that had their debt types marked “To
Do’ “Doing’, or “Done” in TDAnalyzer.

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 13 of 28

PropertyHelper

TDForm TDTimeline MetricsGraph ~ Code Smells FindBugs

Line: 173 Column: 30
Message: Name 'PREFIX' must match pattern 'A[a-z][a-zA-Z0-9]*S$".

Line: 174 Column: 27

Message: Name 'PREFIX_LEN' must match pattern 'A[a-z][a-zA-Z0-9]*$"
. . N

Line: 226 Column: 30

Message: Name 'PREFIX' must match pattern 'A[a-z][a-zA-Z0-9]"S".

Line: 227 Column: 27
Message: Name 'PREFIX_LEN' must match pattern 'A[a-z][a-zA-Z0-9]"S".

Line: 238 Column: 0
Message: Line is longer than 100 characters (found 101).

Line: 536 Column: 0
Message: Line is longer than 100 characters (found 116).

Line: 1021 Column: 0
Message: Line is longer than 100 characters (found 111).

Line: 1127 Column: 0
Message: Line is longer than 100 characters (found 107).

Fig. 10 CheckStyle page. Information of all code style problems found by CheckStyle

CPD ExComment

Severity: error Checker: MemberNameCheck

Severity: error Checker: MemberNameCheck
Severity: error Checker: MemberNameCheck
Severity: error Checker: MemberNameCheck
Severity: error Checker: LineLengthCheck
Severity: error Checker: LineLengthCheck
Severity: error

Checker: LineLengthCheck

Severity: error Checker: LineLengthCheck

By clicking on the “pay” button, the status of the TD
changes from “TO DO” to “DOING”. On the same token,
by clicking on the “paid” button, the status of the TD
item switches from “DOING” to “DONE” This way, the
user can manage each TD item separately. The user can
select in the “Version” field the version that they want to
monitor. From this view, the user can also access the TD
Timeline (Fig. 6) and see the TD items evolution.

Feasibility study |

This section presents the study carried out with the objec-
tive of investigating the feasibility of using the developed
tool. We evaluated whether VisminerTD, through the use
of software visualization, allows one to perform activities
of identification and monitoring of TD items.

Study objective
This study was performed aiming to analyze the Vismin-
er'TD: with the purpose of characterizing its effectiveness

of use; with respect to support activities of identifica-
tion and monitoring of TD; from the point of view of
researchers; and in the context of software development
projects. Thus, through this feasibility study, we intend to
investigate if (i) VisminerTD’s features are able to perform
activities of TD identification and monitoring using real
software projects and (ii) VisminerTD makes it possible to
analyze the evolution of TD items.

Project context

We selected as software objects two real projects: JUnit
(github.com

unit-team

junit4) and Apache Ant (github.com

apache

ant). JUnit is an open-source framework that supports
the creation of automated tests in Java. JUnit4 is available
on GitHub and has 21 versions available, 138 collabora-
tors, and 2225 commits. Apache Ant is a tool developed in

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2 Page 14 of 28

BuildFileRule

TD Form TD Timeline Metrics Graph Code Smells FindBugs CheckStyle E ExComment

Total Duplication: 37.92%

Duplication Occurrences

Tokens Threshold: 100 Token Count: 196 Language: JAVA Occurrences: 2

Filename: src/tests/junit/org/apache/tools/ant/BuildFileRule.java
Begin Line: 211 End Line: 311 Line Count: 101 Duplication (%): 26.73

Filename: src/tests/junit/org/apache/tools/ant/BuildFileTest.java
Begin Line: 513 End Line: 616 Line Count: 104 Duplication (%): 15.56

Tokens Threshold: 100 Token Count: 136 Language: JAVA Occurrences: 2

Filename: src/tests/junit/org/apache/tools/ant/BuildFileRule.java
Begin Line: 126 End Line: 160 Line Count: 35 Duplication (%): 11.19

Filename: src/tests/junit/org/apache/tools/ant/BuildFileTest.java
Begin Line: 293 End Line: 328 Line Count: 36 Duplication (%): 5.79

Fig. 11 CPD page. Information about duplication occurrences detected by CPD

IPlanetDeploymentTool

TDForm TDTimeline MetricsGraph ~ CodeSmells FindBugs CheckStyle CPD

Comment Class | Method Patterns
/* * The displayName variable stores the value of the public class Pattern Score Theme ™
"display-name" element * from the standard EJB IPlanetDeploymentTool
descriptor. As a future enhancement to this task, * we extends future 3 to do better code
may determine the name of the EJB JAR file using this GenericDeploymentTool enhancement improvements debt
display-name, * but this has not be implemented yet.*/ /
in the future 2 status of the work
Total Score=5

B2 next»

Fig. 12 eXcomment page. Information from comments that indicate TD extracted by the eXcomment tool (Apache Ant)—Class:
IPlanetDeploymentTool java

Mendes et al. Journal of the Brazilian Computer Society

(2019) 25:2

Page 15 of 28

1863 — 4828

Commits ©

@ Defect Debt

1600

1400

1200

Total of files having Technical Debt

@ Documentation Debt

© Test Debt

@ Requirement Debt
People Debt

631 — 936

Files©

Technical Debt X Versions
@ Design Debt

@ Code Debt

799 — 1509

@ Unknown Debt

Indicators ©

Architecture Debt

1413

S
1.5

L2 7D Evolution

774 — 1413

Debts ©

@ Build Debt

Fig. 13 TDEvolution perspective. View that allows the understanding of how software is evolving over time regarding the identified TD items

TD Management

TD Evolution

TD Management

Fig. 14 TDManagement perspective. View that allows the monitoring in details of TD items in the project

Version: 1102
TODO - DOING @D - DONE @D -
Touch A‘ MultiRootFileSet LineOrientedOutputStreamRedirector
=2 (o
XMLConstants RegexpTest Touch
ocrecr_pest =2 [ori]
XMLConstants LineOrientedOutputStreamRedirector SOSCheckout
<o ocer =2 [ocsicu oce | [ori]
ChainReaderHelper LineOrientedOutputStreamRedirector ResourceLocation
ocrecr_pest =2 [ori]
ChainReaderHelper Touch ChainReaderHelper
oot o = ocscu ocr Lo
BuildFileRule Touch
ocsicw.ocer =3 [oria]
BuildFileRule
BuildFileRule
[SPay |

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Java, used for the automation of the compilation process.
It is available on GitHub and has 115 versions avail-
able, 36 collaborators, and 14,215 commits. Both projects
were selected because they are widely used in academic
(for empirical studies) and industrial (to support some
development activities) environments. Besides, JUnit has
already been analyzed by Mendes et al. [57], so it would
be possible to make comparisons of performance in the
mining process. The Ant project is about six times bigger
than JUnit. Both projects are mature, large, and with many
contributors.

Design

The study procedure defines an activity of verifying the
internal structure of JUnit and Ant projects aiming to
identify possible parts of them that did not follow good
development practices and, therefore, could affect their
maintainability (possibly TD items). Thus, the study con-
siders the following steps:

1 One of the participants installed and configured the
RM on their laptops, performed the mining process
for both projects (JUnit and Ant), and saved the
results in a database available to all participants.

2 Participants installed and configured VisminerTD
and accessed the information previously mined in
step 1.

3 Participants selected the JUnit project repository and,
then, the Ant project. After, they used the
TDAnalyzer view to search for files with TD
indicators in each project. Next, they selected the
files that had the largest amount of TD indicators.

4 Participants used the TDEvolution view to analyze
the evolution of TD occurrence throughout several
project versions. They also analyzed specific cases
where there was a significant increase in the number
of debt items between two different versions.

5 Finally, participants performed simulations of the use
of TDManagement to verify its operation. They also
analyzed some timelines of TD items to observe if
there were situations in which the number of debt
indicators has increased or decreased over the time
in a same file.

The study was performed by three researchers of the
project (a Ph.D. student, a Master’s student, and an Under-
graduate student) with more than 8 years of experience
in software development. In the following sections, we
describe the activities performed in the use of Vismin-
erTD and also some information about how the tool
supports each of them.

Results
Initially, we analyzed JUnit and Apache Ant reposito-
ries using the RM. For both projects, we considered 19

Page 16 of 28

object-oriented metrics, 7 code smells, duplicate code,
ASA issues, and source code comments. In this study, style
problems were not considered because of two major rea-
sons. First, we could not detect style problems in Apache
Ant due to parsing errors in many files. The CheckStyle
tool simply aborts its analysis when a parser error occurs.
And second, the large amount of style problems in JUnit
because it has no well-defined code styling, some parts
of its code (the newer ones) follows the Google Java Style
(considered in the analysis) while older parts follows a
different custom style.

The mining time of the JUnit project has improved
considerably when compared to this same task reported
in Mendes et al. [57]. The previous analysis took about
30 min; meanwhile with the new version of VisminerTD,
it took only three and half minutes, showing an improve-
ment of almost 1000% in performance for the data mining
activity. For Apache Ant, the mining time was about
16 min. The used computer is the same used in [57]
and has the following specification: Intel Core i5-2520M
processor, 8 GB of RAM, and Linux Mint 18.3 Sylvia
operating system.

The next step was to filter the collected information.
Nine versions of JUnit and 12 versions of Apache Ant,
including master, have been selected to have their infor-
mation displayed in TDAnalyzer module. After, all items
that could indicate the presence of TD were listed as cards,
and it was possible to confirm or reject the indicated items
(if they were a TD item or not). In VisminerTD, this activ-
ity is performed card by card, clicking on the item name.
By doing this, we can have access to detailed information
about the TD item, its indicators, and the different types
of debt that have been identified in that file. After ana-
lyzing the information, the user can confirm that an item
actually has that type of debt or discard that item indicat-
ing that it is a false positive. For the purpose of this study,
all items were confirmed as TD items.

In JUnit, VisminerTD found 805 files containing some
kind of debt and 1250 indications of presence of debt con-
sidering 9 versions of the software (the selected versions
were: r3.8.2, r4.6, r4.7, r4.8, r4.9. r4.10, r4.11, r4.12 and
master (commit 660a373 on February 9, 2018)), result-
ing in an average of 89 files and 139 TD indicators per
version. When selecting the master version, for example,
we noticed that the tool identified 133 files with some
debt. By analyzing different information about metrics
and software comments available in VisminerTD, partici-
pants identified that the artifact with more types of debt
in the master version was “Assert’, with 1036 lines of code
and five different types of debt. For this specific TD item,
the tool reported 23 different TD indicators. An occur-
rence of God Class was detected, indicating the presence
of code and design debt according to Alves et al. [58]. In
addition, 15 code comments were found: (i) seven of them

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

indicating the presence of defect debt; (ii) five indicating
the presence of code debt, (iii) one case indicating the
presence of test debt; and (iv) nine of them pointing to the
presence of debt in general (it was not possible to define a
specific type).

In Apache Ant, VisminerTD found 6,496 files with some
debt and 14,026 indications of presence of debt consider-
ing the 12 versions analyzed (the selected versions were:
1.1,1.2,1.3,14,15,1.6,1.7,1.8,1.9,1.10, 1.10.2 and mas-
ter (commit 52a0ec8 on February 19, 2018)). This resulted
in an average of 541 files and 1,169 TD indicators per ver-
sion. As an example, VisminerTD identified five types of
debt (code, design, defect, requirements, and unknown) in
the “Javadoc” file in the version 1.10.2. This file has 2259
lines of code and the following indicators of the presence
of debt were detected: 7 Complex Methods, 3 Brain Meth-
ods, a God Class, 5 Slow Algorithms, 6 ASA issues and
41 comments with evidence of debt (code, design, defect,
requirements and unknown).

The next step in using VisminerTD is to access the
TDEvolution module (see Fig. 15), that shows how the

Page 17 of 28

presence of TD in the different versions of JUnit is. When
analyzing the view provided by TDEvolution, it was ver-
ified that, from the first to the second version of JUnit,
there was a significant increase in the number of files and
TD indicators (see releases 3.8.2 and 4.6 in Fig. 15). This
change occurred because there was a difference of about
5 years from version 3.8.2 (commit a0f0eel on Decem-
ber 28, 2004) to version 4.6 (commit b5e9885 on April
13, 2009). From the second version, the view presented
an upward and gradual behavior, with a small decrease of
the values in the master version. Concerning the compari-
son among versions, the number of commits increased 14
times and the number of classes increased more than four
times, from the initial version to master, while the number
of indicators and debts had a gradual increase. However,
in version 4.12, there was a significant increase compared
to version 4.11. The main differences are in defect debt
that went from 22 to 33 items and in debt items in general
(unknown type) that changed from 66 to 89 items.

In Apache Ant, versions from 1.1 to the most current
were selected for analysis. Observing Fig. 16, we can see

Ejunit4

158 — 2207

93 — 450

Commits © Files©

250 @ Defect Debt @ Test Debt

@ Documentation Debt

@ Requirement Debt @ Code Debt

People Debt

150
3}
100 32
29

64 62

Total of files having Technical Debt

60/

Technical Debt X Versions
® Design Debt

Fig. 15 Feasibility study—JUnit. JUnit project evolution analysis using TDEvolution view

L2 7D Evolution

48 — 214

Indicators ©

@ Unknown Debt Architecture Debt @ Build Debt

233

35
207

89

(33

412 master

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 18 of 28

Sant

245 — 13871 87 — 1228

Commits © Files©

1600, @ Defect Debt @ Test Debt

@ Documentation Debt People Debt

1600

1413
177

73

Total of files having Technical Debt

400

©

:

12 7D Evolution

176 — 1681

Indicators ©

171 - 1702

Debts ©

Technical Debt X Versions
@ Requirement Debt @ Code Debt @ Design Debt @ Unknown Debt

Architecture Debt @ Build Debt

1701 1702
1675
1648
1616

229 218

1509 283 228

385

374;
367, 9
329 D

28] 25} 28]

0
b
i

1.8.0 1.9.0 1.10.0 master

Fig. 16 Feasibility study—Apache Ant. Apache Ant project evolution analysis using TDEvolution component

that the project size has increased constantly, and this
behavior has been accompanied by an increase in the
occurrence of different types of debt. Specifically, from
version 1.4 to 1.5, the number of commits increased from
1863 to 4828, the number of files from 631 to 936, and
we also detected the appearance of 639 debts and 710 TD
indicators.

The last phase of the study was the analysis of the
TDManagement module, which allows the user to mon-
itor the current status (detected items, items under pay-
ment activities, or items that have been already paid off)
of debts items in the project (see Fig. 17). In the study, 178
debts from version 4.12 of the JUnit project were mapped
to the TO DO panel, 20 to the DOING panel, and 16 to
the DONE panel. In the TO DO panel, all detected debt
items that have not been selected for payment or have not
been already paid off are listed. When the software engi-
neer decides that a debt item should be paid, they can
move the card to the DOING panel. This panel lists all the
debt items that are currently being solved. Once this task
is completed, the item is marked as paid off by moving the

card to the DONE panel. During this process, the amount
of items in each status can be checked through a counter
located at the top of each panel.

In this module, it is also possible to obtain a detailed
view of the current status of a TD item, as well as its
evolution throughout the different versions of the soft-
ware. Clicking on a particular item will show a detail-on-
demand view as well as seen in the TD Analyzer, where
the user can see a timeline presenting the history of that
TD item. For example, in Fig. 18, we can see the TD Time-
line view for the Javadoc file. It presented variations in the
last three versions: new TD indicators appeared in version
rel/1.10.0, and some of them were paid off in the master
version.

Discussion

In this study, it was verified that VisminerTD allows
software engineers to identify TD items by combining
information from different TD indicators (software met-
rics, code smells, duplicated code, style problems, as well
as information extracted from code comment analysis)

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2 Page 19 of 28
TD Management D Evolutio
Version: 12
TO DO @D - DOING @D - DONE @D -
TypeSafeMatcher SimpleTest ParameterizedTestTest
[Spey | [OPeid |
TypeSafeMatcher TestResult
[SPey | [OPeid |
AnnotatedBuilder TestResult ComparisonFailure
| owotome_ocer | == [Opua |
Money ExpectException ComparisonFailure
[ey | [Opaia |
MultipleFailureException ExpectException MultiCategoryTest
[$pey] =x=3 [Opia |
M reException AfterClass
C 3 =3 [Oreid |
SystemExitTest Annotatable
[spoy | [Gpaa |
Enclosed JUnits
| oworowne_ocet | [spey] =3 [Opia |

Fig. 17 Feasibility study—TDManagement. Using TDManagement in the version r4.12 of Ant project

and monitor them through the use of different visual
metaphors.

During the study execution, participants detected some
instances of TD items that were pointed out only by code
comments. This indicates that the eXcomment is relevant
for identification and that such kind of information is rel-
evant and can complement information that originated
from software metrics to support development teams in
tasks of TD identification.

Concerning the support for TD management activi-
ties, the tool allows to store the following information
about each identified TD item: status, responsible for
its insertion, if the debt is intentional or not, principal,
interest amount, interest probability, and others. In addi-
tion, VisminerTD also has visual views that facilitate the
monitoring of the evolution of debt items. It is possi-
ble, for example, to check the growth of the amount of
TD items throughout the different versions of a software.
More specifically, the tool has a slider bar that allows the
comparison of the number of commits, source files, TD
indicators and TD types, between two or more versions of
the project.

This work has implications for both practitioners and
researchers. For practitioners, VisminerTD is available
for use in VisminerTD-Client® and VisminerTD-Service?.
Given the current scenario characterized by very limited
options of tools to support activities of TD identification
and monitoring, the tool presented in this paper approx-
imates the state-of-the-art and the state-of-the-practice
in the TD area, contributing to a wider dissemination of
the concept. For researchers and practitioners, Vismin-
er'TD is an open-source project; thus, they are free to

hold their version of the tool and, for example, implement
the necessary adaptations for using in practice, implement
and evaluate new visual metaphors to support TD-related
activities. Finally, specifically for researchers, the use of
VisminerTD indicated that the use of a combination of
TD indicators (metrics and source code comments) is fea-
sible and should be better investigated in the future to
better understand questions related to the cost-benefit of
this kind of analysis and the level of complementarity and
overlapping among different indicators.

Study limitations

The study was performed by participants with differ-
ent levels of experience. Two of them have professional
experience in the industry. However, all participants have
about 5 years of experience on the development of soft-
ware solutions that involve concepts of software metrics
and visualization. It is also important to highlight that the
participants of the study are also the developers of the
tool. So, they know exactly how to use the tool, and this
may be an issue when considering other participants.

We did not consider style problems in the analyses. The
parser problems encountered in the Apache Ant project
could not be solved without change the CheckStyle source
code since the tools was designed to abort its analysis
when a parser problem occurs. Meanwhile, the styling
inconsistencies in JUnit made the number of TD items and
indicators increase by a lot. Thus, to avoid this difference
between these two scenarios, we removed the CheckStyle
from the analysis.

As another limitation, we considered two open-source
software projects to perform the feasibility study. Despite

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 20 of 28

DESIGNDEBT CODE DEBT

rel/1.10.2

DEFECTDEBT DESIGN DEBT

TD Form Metrics Graph Code Smells FindBugs CheckStyle CPD ExComment

COMPLEXMETHOD | 7 || BRAINMETHOD | 3 SLOWALGORITHM | 5 | AUTOMATIC STATIC ANALYSIS ISSUES | 6

UNKNOWN DEBT CODEDEBT REQUIREMENT DEBT

[COMPLEXMETHOD | 7 | BRAINMETHOD | 3 || COMMENT ANALYSIS UNKNOWN DEBT | 28 || COMMENT ANALYSIS DESIGN DEBT | 2

AUTOMATIC STATICANALYSIS ISSUES | 6

rel/1.10.0

COMMENT ANALYSIS REQUIREMENT DEBT | 1 | COMMENT ANALYSIS DEFECT DEBT | 6 | COMMENT ANALYSIS CODEDEBT | 5 | SLOWALGORITHM | 5

DEFECTDEBT DESIGNDEBT UNKNOWNDEBT CODEDEBT REQUIREMENT DEBT

‘c:- PLEX | ‘ill"lil '::-J | METHO -IE’ m IMENT ANALYSIS UNKI

JWN DEBT | 57 | COMMENT ANALYSIS DESIGNDEBT | 8 | GODCQLASS | 1

AUTOMATIC STATIC ANALYSIS ISSUES | 6

rel/1.9.0

COMMENT ANALYSIS REQUIREMENT DEBT | 4 | COMMENT ANALYSIS DEFECT DEBT | 15 | COMMENT ANALYSIS CODE DEBT | 20 | SLOWALGORITHM | 5

DEFECTDEBT DESIGNDEBT UNKNOWNDEBT CODEDEBT REQUIREMENT DEBT

COMPLEXMETHOD | 7)| BRAINMETHOD | 3 || COMMENT ANALYSIS UNKNOWN DEBT | 25 | COMMENT ANALYSIS DESIGN DEBT | 2 | GODQLASS | 1

AUTOMATIC STATICANALYSIS ISSUES | 6

COMMENT ANALYSIS REQUIREMENT DEBT | 1 | COMMENT ANALYSIS DEFECT DEBT | 4 | COMMENT ANALYSIS CODEDEBT | 5 | SLOWALGORITHM | 5

Fig. 18 Feasibility study—Timeline view. Showing the Timeline view for Javadoc (Apache Ant)

the fact that they are commonly used in both academic
and industrial settings, are from different application
domains, and have different sizes, the obtained results
cannot be generalized to all cases.

In order to overcome some of these limitations, we con-
ducted a second feasibility study to obtain feedback on the
use of the tool from the point of view of other subjects.

Feasibility study Il

The evaluation was an academic case study applying our
tool using real project data to simulate TD identification
and monitoring meetings. The case study description is
based on available guidelines [59].

Study objective

This study aims to analyze the proposed tool with the pur-
pose of characterizing its viability of use with respect to
the usefulness, ease of use, and self-predicted future use,

from the point of view of students and professionals in the
context of identification and monitoring of TD items.

For the study, the identification and monitoring meet-
ing was performed with the support of VisminerTD. We
intended to investigate if participants have a positive per-
ception regarding the use of the tool. It is not the purpose
of this study to analyze the accuracy and/or combination
of the TD indicators. This analysis would require the par-
ticipation of the team involved in the development of the
project, which we intend to do in a next study.

As the objective of this study is related to the perception
about the adoption of a new technology, we conducted
the evaluation using the Technology Acceptance Model
(TAM) [16], which has been extensively used [60]. TAM
considers three constructs—perceived usefulness, ease of
use, and self-predicted future use—which are measured
by a set of questions. We adapted our questions from the
ones used by Ali Babar et al. [61].

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Project context

The study consists of analyzing the applicability of the
proposed tool through the simulation of a TD identifi-
cation and TD monitoring meeting. The objective is to
evaluate, considering a list of candidate TD items from
the JUnit project automatically identified by the Reposito-
ryMiner, which items should be analyzed and monitored
throughout the software development lifecycle, thereby
minimizing the negative impact of debt accumulation on
the project.

Procedure and instrumentation

To carry out the study, we created a virtual machine (VM)
using the Ubuntu 18.10 operating system with LXDE
desktop environment, and we allocated to this VM, 2
processors and 2 GB of RAM. The VM was executed
in computers with Intel Core i5 4950 processors and
8 GB of RAM. We choose this approach, using a VM,
because it made easier to create and redistribute the study
environment to the participants, besides, to ensure an
approximate experience between them.

In the VM, we have installed the VisminerTD and all
other softwares needed to run it (e.g., MongoDB). We
also included a database with the analysis of JUnit project,
which contains information about the versions r3.8.2, r4.6,
r4.7, r4.8, r4.9. r4.10, r4d.11, r4.12, and master (commit
660a373 on February 9, 2018). The analysis performed
did not consider the information from CheckStyle. This
happened because the JUnit has no well-defined code
styling and some parts of its code (the newer ones) fol-
lows the Google Java Style while older parts follows a
different style. Thus, considering the large amount of data
generated by the analysis (due the code styling inconsis-
tencies) and the effort that would have been necessary to
make the project more “analyzable’, we have removed the
CheckStyle from the analysis.

The case study was conducted with the following gen-
eral steps:

1 The researchers trained the participants on TD
concepts, software metrics, code smells, static
program analysis, and source code comments
analysis.

2 The researchers trained the participants about
VisminerTD tool used to simulate the TD
identification and monitoring meeting.

3 Using VisminerTD, the participants, in pairs, carried
out five tasks of identification and monitoring of TD
items.

4 Participants filled in the final evaluation form
individually.

Before starting the study (step 1), each participant filled
in a consent and a characterization form. After, we con-
ducted a brief training on TD in order to familiarize

Page 21 of 28

the participants with the involved concepts. At this time,
seeking to simulate TD identification and monitoring
meetings, we organized the participants in pairs. The
participants could discuss among them, but no communi-
cation was allowed outside the pairs.

During step 2, we gave a training to explain how to use
the VisminerTD to identify and monitor TD items. The
pairs used VisminerTD to perform five tasks (Table 1)
that simulated different scenarios (step 3). Through these
steps, we seek to show to the participants all the features
available in the tool.

At the end of this activity, participants completed, indi-
vidually, an evaluation form about their perceptions on
the VisminerTD (step 4). In this form (Table 3), based
on TAM, each participant analyzed statements related to
the usefulness, ease of use, and self-predicted future use
of the VisminerTD indicating the option that best repre-
sented their point of view, according to the following five
point scale: (1) I totally agree; (2) I agree partially; (3) Neu-
tral; (4) Partially disagree; and (5) Strongly disagree. At the
end of the form, participants described their perceptions
regarding the positive and negative points of the tool and
suggestions for improvements.

Results
Characterization of participants
The participants are undergraduate students coursing a
Software Engineering discipline. In total, 28 undergrad-
uate students participated in the study. Seventy-three
percent of them indicated have some experience with
software development (18% have more than 2 years of
experience). Not all participants had experience with soft-
ware development; however, theoretical concepts were
presented in the software engineering discipline.
Participants also indicated their level of experience in
seven specific areas of the software development process
according to the following scale: (1) none, (2) studied in
class, (3) practiced in classroom projects, (4) used in per-
sonal projects, and (5) used in projects in the industry.
The results are presented in Table 2. We can see that for
all presented areas, there are participants with experience
in the industry.

VisminerTD evaluation

The answers of the participants to the TAM questions are
shown in Table 3. This table presents an overall scenario
of acceptance regarding usefulness, ease of use, and self-
predicted future use.

In all the statements analyzed with respect to use-
fulness, more than 87% of participants agreed with the
affirmations. Moreover, the results indicate that, when
using the VisminerTD, we can expect the following
benefits: improved performance, productivity, and effi-
ciency through ease to identify and monitor TD items

Mendes et al. Journal of the Brazilian Computer Society

Table 1 List of tasks performed for TD identification and monitoring

(2019) 25:2

Page 22 of 28

Task

1 Task 1 (TDAnalyzer)

1. In version r4.12, identify the two debt items that contain “God Class” and “Duplicated Code” indicators, occurring in the same item.

2. Foreach item:

(@) Inform the metric values used to detect “God Class”.

(b) Find the total amount of duplication.

(c) Onthe TDForm tab, change the status of the debts found from “Not Analyzed” to “Doing” and click “Save”.

2 Task 2 (TDAnalyzer)

. Indicate the number of different types of TD present in the “Assert” item in the master version.

2. Using the Timeline tab, from “Assert” item, determine whether there has been any change in the number of indicators from version

4.12 to master. If so, name the indicators.

3. Goto TDForm tab, also from “Assert” item, change the status of the debts found from “Not Analyzed” to “Done”, then click the

“Save” button.

3 Task 3 (TDAnalyzer)

1. In the master version, select the debt type, “Defect Debt/Comment Analysis”, and click on “Update Query”.
2. Enter the number of items found, then click on the button “Confirm All from Filter”.

4 Task 4 (TDManagement)

1. From the TD items identified in the TDAnalyzer, select the master version and simulate the payment of the debt for
ParametrizedTestTest (CODE_DEBT) and BaseTestRunner (DESING_DEBT), until both are in the DONE panel;
2. Find the total amount of items in all 3 panels (TO DO, DOING, and DONE).

5 Task 5 (TDEvolution)

1. Use the slider to limit viewing the versions r4.10 and r4.11.

2. Find the difference of the number of items having a Code Debt from version r4.10 to version r4.11.

3. Investigate whether there has been any abrupt change in the amount of TD items between software versions, and in what
versions this has happened. If so, why do you think this happened?

Table 2 Experience of participants

Knowledge area

Level of experience

1 2 3 4 5
Project management 7 13 3 1 4
Monitoring and correction of software defects 8 8 2 3 7
Software maintenance 8 9 1 3 7
Software architecture 8 3 1 3 3
Software design 6 1M1 4 3 4
Software documentation 11 9 34 1
Requirement specification 6 14 4 2 2
Implementation 1 7 8 4 8
Software testing 4 11 5 4 4

using visual techniques. In addition, the tool has a good
coverage of different types of TD and provides a large
amount of information in an automated way on the indi-
cators.

In assessing the ease of use of the VisminerTD to “easy
to learn” characteristic, 20 participants agreed and 4 par-
ticipants disagreed indicated that they found easy to learn
how to use the tool. When evaluating the interaction with
the tool, 23 indicated that the interaction is clear and
understandable. Regarding to become skillful and remem-
ber how to use the tool, 20 participants indicated that it
would be easy to become skilled while 26 stated that it
would be easy to remember how to identify and monitor
TD items using VisminerTD.

Regarding the self-predicted future use, when asked
about the preference in identifying and monitoring the
TD using VisminerTD, the answers were well distributed

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Page 23 of 28

Table 3 TAM constructs, questions, and Likert Scale Frequency Count

Strongly agree Agree Neutral Disagree Strongly disagree
Usefulness
U1 Using the proposed tool in my job, | would be able to identify 7
and monitor of TD items more quickly. (Quick)
U2 Using the proposed tool, | would improve my performance in 22 5 1
identifying and monitoring TD items. (Job Performance)
U3 Using the proposed tool, | would increase my productivity. 15 1 2 1
(Increase Productivity)
U4 Using the proposed tool, | would improve my effectiveness in 6 1
identifying and monitoring TD items. (Effectiveness)
us Using the proposed tool would make identification and moni- 22 5 1
toring TD items easier. (Makes job easier)
ue | find the proposed tool useful to management of TD items. 20 7 1
(Useful)
Ease of Use
E1 Learning to operate the proposed tool would be easy for me. 10 10 4 4
(Easy to learn)
E2 My interaction with the proposed tool would be clear and 12 5
understandable. (Clear and understandable)
E3 I'would find it easy to use the proposed tool to do what | want 14 9 5
it to do. (Controllable)
E4 [t would be easy to become skillful in using the proposed tool. 12 8 6 2
(Skillful)
E5 [t would be easy to remember how to perform TD identifica- 18 8 2
tion and monitoring using the proposed tool. (Remember)
E6 I find the support easy to use. (Easy to use) 13 11 3 1
Self-predicted future use
St Assuming the proposed tool is available on my job, | predict 16 10 2
that | will use it on a regular basis in the future.
S2 | prefer using the proposed tool for conducting identification 12 6 8 1 1

and monitoring of TD items than not using it.

across the options. This may suggest that although
VisminerTD is well accepted, since 26 participants indi-
cated that they would make use of the tool in the future, it
is not yet ready for use.

Participants were also asked to indicate positive and
negative impressions on the use of the tool. The posi-
tive points were (10 participants) “Ease of visualizing the
results’, “Good visually, intuitive and simple”; (6) “gain in
performance and productivity’, “Speed of identification
of the debts”; (2) “Coverage Issues’, “Quantity of infor-
mation”; (2) “Automates the identification of TDs’, “Auto-
mates the management of TDs”; (1) “Nice environment
(Mlustrative) and with dynamic update (in real time)”; (1)
“Practicality, ease and good information filters” On the
other hand, the participants also pointed out that “the tool
have is a few complex” (2 participants) and “need the assis-
tance of a researcher” (2 participants), “missing filters in
TDManagement view” (1) and “the layout of some tool
filters is confusing” (1).

Discussion
This study provided positive evidence on the use of the
proposed tool, indicating that VisminerTD may be useful
in supporting TD identification and TD monitoring activ-
ities (96% of participants indicated that they could use the
tool to identify and monitor TD). The results also pointed
out that more than 81% of the participants agreed that by
using VisminerTD, they have gains in agility, productivity,
performance, and efficacy when evaluating TD items. In
the point of view of the participants, it is easy to learn and
use VisminerTD, and the interaction with the tool is clear.
Although VisminerTD has shown itself to be an inter-
esting and useful support for TD identification and TD
monitoring, it is yet in its early stages of development and
needs improvements to be ready for use. Participants sug-
gested some improvements such as adding more filters on
some views (e.g., TDManagement), changing the order of
how TD items appear on the TD Analyzer view, the need
to have support for other programming languages. This

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

finding stimulated us to define some future directions on
this research, as described in the “Final remarks” section
of this paper.

Threats to validity

The study participants were chosen by convenience and
are undergraduate students. However, some of them have
experience in software development in industry. Thus,
although the results are not generalizable, they provide an
initial evidence on the investigated topic.

As discussed previously, we did not use the data from
CheckStyle in the analysis used to carry out the study. This
can be considered a threat to validity, since it was not pos-
sible to evaluate the view related to CheckStyle (Check-
Style page in the TDAnalyzer). However, we believe that
the large amount of data, come from CheckStyle analysis,
would compromise the participant’s perception about the
VisminerTD.

Finally, the TD items used for analysis were extracted
from a real software project, but the number of items can
be considered small. This is a threat assumed in this study.
However, we believe that even if we had more TD items
to evaluate, the participants’ perception on the benefits of
VisminerTD would tend to be positive as well.

Comparison to related works

The systematic mapping study performed by Alves et al.
[10] indicated that the identification and monitoring of
TD by means of software visualization techniques still
demand tool support. The authors reported that only
three primary studies about the use of visualization tech-
niques in the TD identification activity were identified. In
this section, we perform a comparative analysis between
VisminerTD and the following related tools: SonarQube,
DebtFlag, and Cast.

SonarQube [62] is one of the best-known tools for code
quality inspection. SonarQube is an open-source soft-
ware capable of extracting a wide variety of reports on a
system, such as software metrics, code smells, TD, and
dependencies between classes. This tool has a strategy of
identifying TD different from that used in VisminerTD.
First, it does not work with source code comment analy-
sis. Second, VisminerTD allows the user to automatically
perform analysis on several versions of the software, a
functionality not present in SonarQube so far.

Although SonarQube has support for more program-
ming languages, the VisminerTD can also be extended to
support more programming languages through its generic
Abstract Syntax Tree. We are currently working to sup-
port C/C++ in the future releases.

DebtFlag [63] is a tool that allows marking code to
“link” debt items to the point of the project in which it
is located in the code. The tool consists of two parts,
an Eclipse Integrated Development Environment (IDE)

Page 24 of 28

plugin, called DebtFlag, and a web application. The Debt-
Flag plugin is responsible for capturing TD items through
the Eclipse IDE, tracing its propagation and supporting
its micromanagement, while the web application provides
a dynamic presentation of the TD items detected by the
DebtFlag plugin. Through this approach, the tool focuses
on allowing the developer to manage TD items at the
implementation level as well as at a higher level.

Although it does not provide the possibility of observ-
ing TD propagation, VisminerTD extracts a larger amount
of information, as well as combining them. VisminerTD
is built to be flexible, IDE-independent, extensible, and
persistent-support. In this way, data can be analyzed using
more robust mechanisms: this is especially useful in large
data sets. In addition, the modular structure of the tool,
due to the two modules RM and VisminerTD, also facil-
itates its integration with other tools for identifying and
monitoring TD items.

CAST Application Intelligence Platform (AIP) [64] pro-
vides an approach for measuring TD on a regular basis.
Through its use, development teams can identify struc-
tural flaws adding them to the TD of the application.
This tool relies on some other CAST proprietary tools
to perform its analysis. CAST AIP also has a strategy of
identifying TD different from that used in VisminerTD.
First, it does not work with source code comment anal-
ysis. Second, while VisminerTD can identify nine types
of debt, CAST AIP identifies only two types (code and
architecture debt).

Table 4 presents a comparison between VisminerTD
and the other related tools. The main characteristics
analyzed were (i) License; (ii) Programming languages:
the supported programming languages; (iii) New parsers:
allows the addition of new parsers; (iv) Repository mining:
helps to mining local and remote repositories; (v) Object-
oriented metrics: computes object-oriented software met-
rics; (vi) Style problems: detects coding style problems;
(vii) ASA issues: detects ASA issues; (viii) Code Smells:
detects code smells; (ix) Custom TD thresholds: allows
to set TD identification thresholds; (x) Multiple versions
analysis: allows the analysis of multiple versions automat-
ically; (xi) Source metrics analysis: analyzes source code
metrics for TD identification; (xii) Code comments analy-
sis: analyzes source code comments for TD identification;
(xiii) Availability: the tool is available for download; and
(xiv) Standalone: the tool can run without an IDE.

As it can be observed in Table 1, VisminerTD is a tool
with more functionalities among the analyzed character-
istics, standing out in relation to the related works by (i)
having a generic Abstract Syntax Tree allowing the cre-
ation of new parsers for mining source codes in other
programming languages; (ii) accessing information from
GIT and GITHUB; (iii) integrating with different tools
that allow the combination of several types of metrics (e.g.,

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2 Page 25 of 28
Table 4 A comparison between VisminerTD and the other related tools

Characteristics VisminerTD SonarQube DebtFlag CAST AIP

License Free Free Not Found Commercial
Programming languages Java Java and 20 others Java Java and 50 others
New parsers Yes Yes No No

Repository mining Yes No No No
Object-oriented metrics Yes Yes No Yes

Style problems Yes Yes No Yes

ASA issues Yes Yes No Yes

Code Smells Yes Yes No No

Custom TD thresholds Yes Yes Yes Yes

Multiple versions analysis Yes No No No

Source metrics analysis Yes Yes No No

Code comments analysis Yes No No No

Availability Yes Yes No Yes

Standalone Yes Yes No Yes

code smells, bugs, issues, and source code comments); and
(iv) allowing the identification of different types of TD
indicators during software evolution.

Regarding the Table 1, we only considered a small
amount of features. It is worthy mentioning that the
tools SonarQube and Cast AIP have several other fea-
tures that are not in the table; furthermore, they also
analyze more programming languages. Although that the
VisminerTD is just in its initial state, we intend to improve
the VisminerTD adding support for more programming
languages and more features in the future releases, espe-
cially features related to the combination of data from
TD identification and software repositories, such as, an
adviser for who must to pay a TD based in its commit
history. We did not find functionalities like these in other
tools available.

Final remarks

VisminerTD supports the identification and monitoring
of debt items using software visualization techniques.
Currently, the tool allows the analysis of 19 software met-
rics, detection of seven code smells, ASA issues, duplicate
code occurrences, style problems in Java code, and the
identification of nine types of debt (architecture, build,
code, defect, documentation, design, requirement, peo-
ple, and test debt). Moreover, it allows the joint analysis
of data from metrics and code comments to support the
identification of debt items.

The studies presented in this work provides initial evi-
dence on the feasibility of using VisminerTD to analyze
data from real software projects. The next steps of this
research involve the execution of empirical studies in
industrial environments to investigate how VisminerTD

can be inserted in practical scenarios and what is the
perception of software practitioners on its use.

Considering this research as a starting point, some per-
spectives of future work are as follows: (i) evolve Vismin-
er'TD based on the users’ perception regarding its use;
(ii) replicate the second study in other academic/industry
scenarios; (iii) investigate when/how to use the proposed
strategy in the context of a software development pro-
cess and what impacts (e.g., in terms of effort) it brings
to the development team; (iv) improve both Reposito-
ryMiner and VisminerTD (e.g., adding more features and
support for more programming languages), and (v) evalu-
ate/evolve the accuracy of the RepositoryMiner automatic
TD identification process considering industry projects
and their development teams. We also intend to inves-
tigate how we could improve the proposed strategy to
support organizational decisions regarding TD payment
considering TD items prioritization and TD indicators
agglomeration.

Endnotes
Uhttps://visminer.github.io
https://github.com/visminer/repositoryminer
3 https://github.com/visminer/visminertd-client
*https://github.com/visminer/visminertd-service

Abbreviations

AIP: Application Intelligence Platform; AMW: Average Method Weight; API:
Application Programming Interface; ATFD: Access To Foreign Data; CCB:
Configuration Control Board; CPD: Copy/Paste Detector; CYCLO: McCabe's
Cyclomatic Number; FDP: Foreign Data Provider; IDE: Integrated Development
Environment; JAR: Java ARchive; JSON: JavaScript Object Notation; LAA:
Locality Attribute Accesses; LOC: Lines of Code; LVAR: Number of Local
Variables; MAXNESTING: Maximum Nesting Level; MLOC: Method Lines of

https://visminer.github.io
https://github.com/visminer/repositoryminer
https://github.com/visminer/visminertd-client
https://github.com/visminer/visminertd-service

Mendes et al. Journal of the Brazilian Computer Society (2019) 25:2

Code; NOA: Number of Attributes; NOAM: Number of Accessor Methods;
NOAV: Number of Accessed Variables; NOM: Number of Methods; NOPA:
Number Of Public Attributes; NProtM: Number of Protected Members; PAR:
Number of Parameters; REST: Representational State Transfer; RM:
RepositoryMiner; TCC: Tight Class Cohesion; TD: Technical debt; WMC:
Weighted Method Count; WOC: Weight Of a Class

Acknowledgements
This work was partially supported by CNPq Universal 2014 grant
458261/2014-9 and SECTI-UFBA Cooperation Agreement 2012-1.

Funding
This work was partially supported by the National Council for Scientific and
Technological Development (CNPg), grant 840003/2017-0.

Availability of data and materials

The authors declare that all data and materials are available at VisminerTD Site.
The “Instructions” section in site describes how to replicate the performed
study and execute the RepositoryMiner, VisminerTD-Service, and
VisminerTD-Client tools.

VisminerTD Client
® Project name: VisminerTD Client
Project home page: https://visminer.github.io/
Archived version: https://doi.org/10.5281/zenodo.1195755
Operating system: Platform independent
Programming language: TypeScript
Other requirements: Node.js 8.9 or higher and Angular 5
License: Apache License 2.0
Any restrictions to use by non-academics: license needed

VisminerTD Service
® Project name: VisminerTD Service
® Project home page: https://visminer.github.io/

e Archived version: https://doi.org/10.5281/zenodo.1195789

e Operating system: Platform independent

® Programming language: JavaScript

® QOther requirements: Node.js 8.9 or higher and MongoDB 3.2 or higher

® |icense: Apache License 2.0

® Any restrictions to use by non-academics: license needed
RepositoryMiner

® Project name: RepositoryMiner

® Project home page: https://visminer.github.io/

e Archived version: https://doi.org/10.5281/zenodo.1195815

e Operating system: Platform independent

® Programming language: Java

® Other requirements: Java 7 or higher and MongoDB 3.2 or higher

® License: Apache License 2.0

® Any restrictions to use by non-academics: license needed

Authors’ contributions

This paper aims to present the work generated from the doctorate degree of
TSM (author). This paper results from a collaborative work. MGMN was the
advisor and ROS co-advisor of TSM in his doctorate degree. MGMN and ROS
contributions are mainly based on the academic orientation, as a partner for
making decisions during the doctorate degree and writing the article. FGG,
DPG, and RLN helped with the development of the tool and writing the article.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 26 of 28

Author details

TFederal University of Bahia, UFBA, Av Adhemar de Barros, s/n, Instituto de
Matematica, 40170-110 Salvador, Brazil. 2Salvador University, Av Tancredo
Neves, 2131, Caminho das Arvores, Salvador, Brazil. 3Federal Institute of Bahia,
R. Emidio dos Santos, s/n, Sala A303 - Barbalho, 40301-015 Salvador, Brazil.
“4Federal Institute of Bahia-Santo Amaro, Tv. S0 José, s/n - Bomfim, 44200-000,
Santo Amaro, Brazil. >Fraunhofer Project Center at UFBA, Av. Luiz Viana Filho -
Loteamento Colinas do Jaguaribe, Lote M, Salvador, Brazil.

Received: 20 March 2018 Accepted: 20 November 2018
Published online: 16 January 2019

References

1. Lientz BP, Swanson EB, Tompkins GE (1978) Characteristics of application
software maintenance. Commun ACM 21(6):466-471

2. Lehman MM, Belady LA (1985) Program Evolution : Processes of Software
Change. Lehman MM, Belady LA (eds). Academic Press London, Orlando

3. Parnas DL (1994) Software aging. In: Proceedings of the 16th International
Conference on Software Engineering. [EEE Computer Society Press,
London. pp 279-287

4. Seaman C,Guo Y (2011) Chapter 2 - measuring and monitoring technical
debt. Adv Comput 82:25-46. Elsevier. https://doi.org/10.1016/B978-0-12-
385512-1.00002-5. http://www.sciencedirect.com/science/article/pii/
B9780123855121000025

5. lzurieta C, Vetrd A, Zazworka N, Cai 'Y, Seaman C, Shull F (2012) Organizing
the technical debt landscape. In: Proceedings of the Third International
Workshop on Managing Technical Debt. MTD "12. IEEE Press, Piscataway.
pp 23-26. http://dl.acm.org/citation.cfm?id=2666036.2666040

6. Kruchten P, Nord RL, Ozkaya | (2012) Technical debt: From metaphor to
theory and practice. IEEE Softw 29(6):18-21. https://doi.org/10.1109/MS.
2012.167

7. Avgeriou P, Kruchten P, Ozkaya |, Seaman C (2016) Managing Technical
Debt in Software Engineering (Dagstuhl Seminar 16162). Dagstuhl Rep
6(4):110-138. https://doi.org/10.4230/DagRep.6.4.110

8. Cunningham W (1992) The wycash portfolio management system.
SIGPLAN OOPS Mess 4(2):29-30. https://doi.org/10.1145/157710.157715

9. Fowler M Technical Debt Quadrant. http://www.martinfowler.com/bliki/
TechnicalDebtQuadrant.html. Accessed 23 Feb 2018

10. Alves NSR, Mendes TS, de Mendonga MG, Spinola RO, Shull F, Seaman C
(2016) Identification and management of technical debt: A systematic
mapping study. Inf Softw Technol 70:100-121. https://doi.org/10.1016/j.
infsof.2015.10.008

11. Spinola RO, Vetré A, Zazworka N, Seaman C, Shull F (2013) Investigating
technical debt folklore: Shedding some light on technical debt opinion.
In: Managing Technical Debt (MTD), 2013 4th International Workshop On.
pp 1-7. https://doi.org/10.1109/MTD.2013.6608671

12. Zazworka N, Spinola RO, Vetro A, Shull F, Seaman C (2013) A case study
on effectively identifying technical debt. In: Proceedings of the 17th
International Conference on Evaluation and Assessment in Software
Engineering. EASE '13. ACM, New York. pp 42-47. https://doi.org/10.1145/
2460999.2461005

13. LiZ, Avgeriou P, Liang P (2015) A systematic mapping study on technical
debt and its management. J Syst Softw 101:193-220. https://doi.org/10.
1016/j.j55.2014.12.027

14. Novais R, Simoées P, Mendonga M (2012) Timeline matrix: an on demand
view for software evolution analysis. In: Il Brazilian Workshop on Software
Visualization. Natal, Brazil. pp 9-16. http://reuse.cos.ufrj.br/wbvs2012/
papers/wbvs02.pdf

15. Magnavita R, Novais R, Silva B, Mendonga M Using evowave for logical
coupling analysis of a long-lived software system. Workshop de
Visualizagdo de Software, Evolugao e Manutengao / VIl Congresso
Brasileiro de Software, Maringa, Brazil. pp 1-8. https://vem2016.ufba.br/
artigos/Session3_VEM_2016_paper_9.pdf

16. Davis FD (1989) Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q 13(3):319-340. https://doi.
0rg/10.2307/249008

17. Brown N, Cai Y, Guo Y, Kazman R, Kim M, Kruchten P, Lim E, MacCormack
A, Nord R, Ozkaya |, Sangwan R, Seaman C, Sullivan K, Zazworka N (2010)
Managing technical debt in software-reliant systems. In: Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research,
FOSER "10. ACM, New York. pp 47-52. https://doi.org/10.1145/1882362.
1882373

https://visminer.github.io/
https://doi.org/10.5281/zenodo.1195755
https://visminer.github.io/
https://doi.org/10.5281/zenodo.1195789
https://visminer.github.io/
https://doi.org/10.5281/zenodo.1195815
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
http://www.sciencedirect.com/science/article/pii/B9780123855121000025
http://www.sciencedirect.com/science/article/pii/B9780123855121000025
http://dl.acm.org/citation.cfm?id=2666036.2666040
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1109/MS.2012.167
https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.1145/157710.157715
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1109/MTD.2013.6608671
https://doi.org/10.1145/2460999.2461005
https://doi.org/10.1145/2460999.2461005
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/j.jss.2014.12.027
http://reuse.cos.ufrj.br/wbvs2012/papers/wbvs02.pdf
http://reuse.cos.ufrj.br/wbvs2012/papers/wbvs02.pdf
http s://vem2016.ufba.br/artigos/Session3_VEM_2016_paper_9.pdf
http s://vem2016.ufba.br/artigos/Session3_VEM_2016_paper_9.pdf
https://doi.org/10.2307/249008
https://doi.org/10.2307/249008
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1145/1882362.1882373

Mendes et al. Journal of the Brazilian Computer Society

20.

21.

22.

23.

24.
25.
26.

27.

28.
29.

30.

31

32.

33.

34.

35.

36.

37.

38.

(2019) 25:2

Morgenthaler JD, Gridnev M, Sauciuc R, Bhansali S (2012) Searching for
build debt: Experiences managing technical debt at google. In:
Proceedings of the Third International Workshop on Managing Technical
Debt, MTD "12. IEEE Press, Piscataway. pp 1-6. http://dl.acm.org/citation.
cfm?id=2666036.2666037

Bohnet J, Doliner J (2011) Monitoring code quality and development
activity by software maps. In: Proceedings of the 2nd Workshop on
Managing Technical Debt, MTD '11. ACM, New York. pp 9-16. https://doi.
0rg/10.1145/1985362.1985365

Snipes W, Robinson B, Guo Y, Seaman C (2012) Defining the decision
factors for managing defects: A technical debt perspective. In:
Proceedings of the Third International Workshop on Managing Technical
Debt, MTD "12. IEEE Press, Piscataway. pp 54-60. http://dl.acm.org/
citation.cfm?id=2666036.2666046

Guo Y, Seaman C (2011) A portfolio approach to technical debt
management. In: Proceedings of the 2Nd Workshop on Managing
Technical Debt, MTD '11. ACM, New York. pp 31-34. https://doi.org/10.
1145/1985362.1985370

Seaman C, Spinola R (2013) Managing technical debt. In: (Short Course)
XVII Brazilian Symposium on Software Quality, SBC, Salvador, Brazil
Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslen A (2000)
Experimentation in software engineering: an introduction. Kluwer
Academic Publishers, Norwell. https://doi.org/10.1007/978-3-642-29044-2
Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented
design. IEEE Trans Softw Eng 20(6):476-493

Lanza M, Marinescu R (eds) (2006) Object-Oriented Metrics in Practice.
Springer, New York. https://doi.org/10.1007/3-540-39538-5

Fowler M (1999) Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston

Fontana FA, Ferme V, Spinelli S (2012) Investigating the impact of code
smells debt on quality code evaluation. In: Proceedings of the Third
International Workshop on Managing Technical Debt, MTD "12. IEEE Press,
Piscataway. pp 15-22. http://dl.acm.org/citation.cfm?id=2666036.
2666039

FindBugs: Find Bugs in Java Programs. http://findbugs.sourceforge.net/.
Accessed 23 Feb 2018

CheckStyle: CheckStyle. http://checkstyle.sourceforge.net. Accessed 23
Feb 2018

Corazza A, Maggio V, Scanniello G (2015) On the coherence between
comments and implementations in source code. In: 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications.

pp 76-83. https://doi.org/10.1109/SEAA.2015.20

Farias MADF, Neto MGDM, Silva ABD, Spinola RO (2015) A contextualized
vocabulary model for identifying technical debt on code comments. In:
IEEE 7th International Workshop on Managing Technical Debt (MTD).
Bremen, Germany. pp 25-32. http://doi.ieeecomputersociety.org/10.
1109/MTD.2015.7332621

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical
debt. In: Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference On. pp 91-100. https://doi.org/10.1109/ICSME.
201431

Farias MAF, Santos JA, da Silva AB, Kalinowski M, Mendonga M, Spinola RO
(2016) Investigating the Use of a Contextualized Vocabulary in the
Identification of Technical Debt: A Controlled Experiment. In: ICEIS.

pp 369-378. https://doi.org/10.5220/0005914503690378

Maldonado E, Shihab E, Tsantalis N (2017) Using natural language
processing to automatically detect self-admitted technical debt. IEEE
Trans Softw Eng PP(99):1-1

Koschke R (2003) Software visualization in software maintenance, reverse
engineering, and re-engineering: A research survey. J Softw Maint
15(2):87-109. https://doi.org/10.1002/smr.270

Roman GC, Cox KC (1992) Program visualization: The art of mapping
programs to pictures. In: Proceedings of the 14th International
Conference on Software Engineering, ICSE '92. ACM, New York.

pp 412-420. https:/doi.org/10.1145/143062.143157

Novais RL, de Mendonca Neto MG (2014) Software evolution
visualization: Status, challenges, and research directions. In: Ghani |, Kadir
WMNW, Ahmad MN (eds). Handbook of Research on Emerging
Advancements and Technologies in Software Engineering, chap 26. Gl
Global, Hershey. pp 597-611

Chen C (2004) Information Visualization - Beyond the Horizon. Springer,
New York

39.

40.

41.

42.

43.

44,

45.

46.

47.
48.

49.

50.

52.
53.

54.

55.

56.

57.

58.

59.

60.

Page 27 of 28

Diehl S (2007) Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer, Secaucus

Storey M-AD, Cubrani¢ D, German DM (2005) On the use of visualization
to support awareness of human activities in software development: A
survey and a framework. In: Proceedings of the 2005 ACM Symposium on
Software Visualization, SoftVis '05. ACM, New York. pp 193-202. https://
doi.org/10.1145/1056018.1056045

Novais RL, Torres A, Mendes TS, Mendonca M, Zazworka N (2013)
Software evolution visualization: A systematic mapping study. Inf Softw
Technol 55(11):1860-1883. https://doi.org/10.1016/j.infsof.2013.05.008
Keim DA (2002) Information visualization and visual data mining. IEEE
Trans Vis Comput Graph 8(1):1-8. https://doi.org/10.1109/2945.981847
Ferreira de Oliveira MC, Levkowitz H (2003) From visual data exploration
to visual data mining: A survey. IEEE Trans Vis Comput Graph
9(3):378-394. https://doi.org/10.1109/TVCG.2003.1207445

Carneiro G, Gomes de Mendonga Neto M (2013) Sourceminer - a
multi-perspective software visualization environment. In: ICEIS 2013 -
Proceedings of the 15th International Conference on Enterprise
Information Systems, vol. 2. SciTePres, Angers, France. pp 25-36

Novais R, Santos JA, Mendonga M (2017) Experimentally assessing the
combination of multiple visualization strategies for software evolution
analysis. J Syst Softw 128:56-71. https://doi.org/10.1016/},55.2017.03.006
Gomes F, Mendes T, Carvalho L, Spinola R, Novais R, Mendonga M (2017)
Repositoryminer — uma ferramenta extensivel de mineragdo de
repositorios de software para identificagao automatica de divida técnica.
Congresso Brasileiro de Software: Teoria e Prética (CBSoft) - Saldo de
Ferramentas, Fortaleza-Brazil

MongoDB: For giant ideas. https://www.mongodb.com. Accessed 23 Feb 2018
PMD: An extensible cross-language static code analyzer. https://pmd.
github.io. Accessed 23 Feb 2018

Angular: One framework for mobile and desktop. https://angular.io/.
Accessed 23 Feb 2018

Bootstrap: The most popular HTML, CSS, and JS library in the world.
http://getbootstrap.com. Accessed 23 Feb 2018

HighCharts: Highcharts makes it easy for developers to set up interactive
charts in their web pages. https://www.highcharts.com/. Accessed 23
Feb 2018

NodeJS: NodelS. https://nodejs.org/en/. Accessed 23 Feb 2018

Express: Fast, unopinionated, minimalist web framework for Node.js.
https://expressjs.com. Accessed 23 Feb 2018

Mongoose: Elegant mongodb object modeling for node.js. https://
mongoosejs.com. Accessed 23 Feb 2018

Yuepu G, Spinola R, Seaman C (2014) Exploring the costs of technical
debt management: a case study. Empir Softw Eng:1-24. https://doi.org/
10.1007/510664-014-9351-7

Silva D, Santos F, Neto P (2012) Os beneficios do uso de Kanban na
geréncia de projetos de manutencao de software. VIl Simpasio Brasileiro
de Sistemas de Informagao (SBSI), Trilhas Tacnicas, Sdo Paulo, Brazil.

pp 337-347

Mendes TS, Gongalves DP, Gomes F, Spinola R, Novais R, Mendonga M
(2017) VisminerTD: Uma Ferramenta para Identificagdo Automatica e
Monitoramento Interativo de Divida Técnica. In: V Workshop de
Visualizagao de Software, Evolucdo e Manutengao / VIIl Congresso
Brasileiro de Software, Fortaleza. http://vem2017.ufu.br/artigos/
Mendes_et_al_2017.pdf

Alves NSR, Ribeiro LF, Caires V, Mendes TS, Spinola RO (2014) Towards an
ontology of terms on technical debt. In: Proceedings of the 2014 Sixth
International Workshop on Managing Technical Debt. IEEE Computer
Society, Washington. pp 1-7. https://doi.org/10.1109/MTD.2014.9
Runeson P, Host M, Rainer A, Regnell B (2012) Case Study Research in
Software Engineering: Guidelines and Examples. 1st ed. Workshop de
Visualizagao de Software, Evolu¢ao e Manutencgao / VIl Congresso
Brasileiro de Software, Maringd, Brazil. ISBN: 978-1-118-18100-3

Turner M, Kitchenham B, Brereton P, Charters S, Budgen D (2010) Does
the technology acceptance model predict actual use? a systematic
literature review. Inf Softw Technol 52(5):463-479. https://doi.org/10.
1016/j.infsof.2009.11.005

Babar MA, Winkler D, Biffl S (2007) Evaluating the usefulness and ease of
use of a groupware tool for the software architecture evaluation process.
In: First International Symposium on Empirical Software Engineering and

http://dl.acm.org/citation.cfm?id=2666036.2666037
http://dl.acm.org/citation.cfm?id=2666036.2666037
https://doi.org/10.1145/1985362.1985365
https://doi.org/10.1145/1985362.1985365
http://dl.acm.org/citation.cfm?id=2666036.2666046
http://dl.acm.org/citation.cfm?id=2666036.2666046
https://doi.org/10.1145/1985362.1985370
https://doi.org/10.1145/1985362.1985370
https://doi.org/10.1007/978-3- 642-29044-2
https://doi.org/10.1007/3-540-39538-5
http://dl.acm.org/citation.cfm?id=2666036.2666039
http://dl.acm.org/citation.cfm?id=2666036.2666039
http://findbugs.sourceforge.net/
http://checkstyle.sourceforge.net
https://doi.org/10.1109/SEAA.2015.20
http://doi.ieeecomputersociety.org/10.1109/MTD.2015.7332621
http://doi.ieeecomputersociety.org/10.1109/MTD.2015.7332621
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.5220/0005914503690378
https://doi.org/10.1002/smr.270
https://doi.org/10.1145/143062.143157
https://doi.org/10.1145/1056018.1056045
https://doi.org/10.1145/1056018.1056045
https://doi.org/10.1016/j.infsof.2013.05.008
https://doi.org/10.1109/2945.981847
https://doi.org/10.1109/TVCG.2003.1207445
https://doi.org/10.1016/j.jss.2017.03.006
https://www.mongodb.com
https://pmd.github.io
https://pmd.github.io
https://angular.io/
http://getbootstrap.com
https://www.highcharts.com/
https://nodejs.org/en/
https://expressjs.com
https://mongoosejs.com
https://mongoosejs.com
https://doi.org/10.1007/s10664-014-9351-7
https://doi.org/10.1007/s10664-014-9351-7
http://vem2017.ufu.br/artigos/Mendes_et_al_2017.pdf
http://vem2017.ufu.br/artigos/Mendes_et_al_2017.pdf
https://doi.org/10.1109/MTD.2014.9
https://doi.org/10.1016/j.infsof.2009.11.005
https://doi.org/10.1016/j.infsof.2009.11.005

Mendes et al. Journal of the Brazilian Computer Society

62.

63.

64.

(2019) 25:2

Measurement (ESEM 2007). pp 430-439. https://doi.org/10.1109/ESEM.
2007.48

SonarQube: The leading product for continuous code quality. https://
www.sonarqube.org/. Accessed 23 Feb 2018

Holvitie J, Leppanen V (2013) Debtflag: Technical debt management with
a development environment integrated tool. In: 4th International
Workshop on Managing Technical Debt (MTD). pp 20-27. https://doi.org/
10.1109/MTD.2013.6608674

Software C Software Intelligence for Digital Leaders. https://www.
castsoftware.com/. Accessed 23 Feb 2018

Page 28 of 28

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1109/ESEM.2007.48
https://doi.org/10.1109/ESEM.2007.48
https://www.sonarqube.org/
https://www.sonarqube.org/
https://doi.org/10.1109/MTD.2013.6608674
https://doi.org/10.1109/MTD.2013.6608674
https://www.castsoftware.com/
https://www.castsoftware.com/

	Abstract
	Keywords

	Introduction
	Background
	Technical debt
	Technical debt indicators
	Software visualization

	VisminerTD
	RepositoryMiner
	VisminerTD
	VisminerTD views
	TDAnalyzer View
	TD form
	TD Timeline
	Metrics Graph
	Code Smells
	FindBugs
	CheckStyle
	CPD
	eXcomment

	TDEvolution View
	TDManagement View

	Feasibility study I
	Study objective
	Project context
	Design
	Results
	Discussion
	Study limitations

	Feasibility study II
	Study objective
	Project context
	Procedure and instrumentation
	Results
	Characterization of participants
	VisminerTD evaluation

	Discussion
	Threats to validity

	Comparison to related works
	Final remarks
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	VisminerTD Client
	VisminerTD Service
	RepositoryMiner

	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

