Shulby et al. Journal of the Brazilian Computer
Society (2019) 25:1
https://doi.org/10.1186/s13173-018-0081-3

Journal of the
Brazilian Computer Society

RESEARCH Open Access

Theoretical learning guarantees applied ®

to acoustic modeling

Christopher D. Shulby'2"

CrossMark

, Martha D. Ferreira?, Rodrigo F. de Mello? and Sandra M. Aluisio?

Abstract

robust recognition rates can be obtained.

learning theory, Support vector machines

In low-resource scenarios, for example, small datasets or a lack in computational resources available, state-of-the-art
deep learning methods for speech recognition have been known to fail. It is possible to achieve more robust models if
care is taken to ensure the learning guarantees provided by the statistical learning theory. This work presents a
shallow and hybrid approach using a convolutional neural network feature extractor fed into a hierarchical tree of
support vector machines for classification. Here, we show that gross errors present even in state-of-the-art systems
can be avoided and that an accurate acoustic model can be built in a hierarchical fashion. Furthermore, we present
proof that our algorithm does adhere to the learning guarantees provided by the statistical learning theory. The
acoustic model produced in this work outperforms traditional hidden Markov models, and the hierarchical support
vector machine tree outperforms a multi-class multilayer perceptron classifier using the same features. More
importantly, we isolate the performance of the acoustic model and provide results on both the frame and phoneme
level, considering the true robustness of the model. We show that even with a small amount of data, accurate and

Keywords: Acoustic modeling, Convolutional neural networks, Shallow learning, Speech recognition, Statistical

Introduction

Most speech-processing applications rely on acoustic
models which build the bridge between the audio signal
and its phonetic transcription. After a sentence prompt
has been phonetically transcribed, the task of learning
which phonemes belong to certain audio segments is far
from trivial, but essential to modern speech applications,
since problems at this stage are likely to propagate, even
with the help of a robust language model. For automatic
speech recognition (ASR), it is essential that phonemes are
transcribed completely and in the correct order; in other
words, all phonemes in sequence should be recognized.
Normally, an ASR system consists of an acoustic model,
a pronunciation model and a language model. The acous-
tic model attempts to match the signal to its probable
phoneme(s), and the posterior values are used in the pro-
nunciation model to find the most likely words for each

*Correspondence: cshulby@icmc.usp.br

'Samsung SIDI Institute, Rua Aguagu, 171, 13098-321 Campinas, SP, Brazil
2Institute of Mathematical and Computer Sciences, University of Sao Paulo,
Avenida Trabalhador S&o-Carlense, 400, 13566-590 Sao Carlos, SP, Brazil

@ Springer Open

segment, which works as an input to the language model
to determine the probable chunks or phrases.

ASR results are generally reported with all of these com-
ponents included; however, it is important to accurately
model the acoustic properties so that errors do not prop-
agate in the other models. Reliable phoneme-level error
detection is still a great need [1, 2] for automatic pronun-
ciation training where a pronunciation model can actually
damage the desired results.

Recent work in state-of-the-art speech recognition has
benefited greatly from deep learning techniques. While
results have become significantly better, it is fair to assume
a high risk for overfitting of the data and difficult to
provide solid learning guarantees. Beyond these obvious
issues, deep learning algorithms are notoriously poor per-
formers on small datasets or datasets with noise. We
believe this is due to the lack of generalization capabil-
ities of such networks and that this could be avoided if
the care to establish learning guarantees was taken during
development phases.

The long time state-of-the-art Gaussian mixture
models - hidden Markov models (GMM-HMM) acoustic

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-018-0081-3&domain=pdf
http://orcid.org/0000-0001-9637-9657
mailto: cshulby@icmc.usp.br
http://creativecommons.org/licenses/by/4.0/

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

models have become less popular since the deep learning
movement in the last 5 years. In many cases, deep learning
has significantly reduced the error rates of ASR systems
[3]. GMM-HMM models have the advantage that “good”
models can be built using relatively little data (about 10 h
of speech) and can be trained quickly (in a couple of hours
at most). They also do not require the enormous corpora
needed for training deep neural networks [4]. The trade-
off in quality vs. quantity seems to be somewhere on the
spectrum between these two methods for most applica-
tions. Besides the training time, the real problem lies in
the availability of training data for under-resourced lan-
guages or specific applications. On the other hand, the
complexity of neural network models, especially in brute-
force approaches, can be a problem, since they can require
huge corpora. Recent corpora released for deep mod-
els contain over a thousand hours of audio data [5, 6]
and can take months to train [7]. More recently, multi-
conditional training (MCT) and similar techniques have
made their way to state-of-the-art implementations [8, 9].
In an effort to account for noise, the database is exponen-
tially augmented which requires even more training time
(several months with an immense GPU-cluster infrastruc-
ture). While these enormous datasets and augmentation
techniques usually implement regularizing techniques like
dropout and bottlenecking, it is clear that they cannot
provide solid learning guarantees [10].

In this paper, we propose a method, useful for
low-resource training environments, which provides
solid learning guarantees, using a shallow-shallow-
convolutional neural network (CNN)-hierarchical tree
support vector machine (HTSVM) architecture. This
architecture combines several techniques which have
already shown success in ASR tasks. We have done this
by taking a knowledge-driven slant on the typical machine
learning approach. First, we take advantage of the well-
known CNN ability to deal with images [11, 12] which
extracts the features from a spectrogram generated from
the audio signal. It is important to note that we use the
CNN only as an extractor and prove that we can extract
meaningful features for classification in a robust way. The
selection of the CNN is in the spirit of a knowledge-
driven manual classification task where trained specialists
in acoustics and laboratory phonetics [13] are able to clas-
sify phonemes even when the spectrogram is fairly noisy.
This is due to the visual representation given to us via fast
Fourier transform.

Humans are able to see a “picture” based on the relative
heights and intensities of formants and energy concen-
trations across spectrogram frequencies. While the actual
frequency values can vary greatly from speaker to speaker,
depending on multiple factors including the length of the
vocal tract, the “picture” is always similar and recognizable
to a human speech scientist. Therefore, it makes sense that

Page 2 of 12

a computer vision algorithm would be suitable in this case.
In previous years, a lot of feature engineering was used
for GMM-HMM acoustic models which attempted to rep-
resent the spectrogram using features like mel-frequency
cepstrum coefficients (MFCC), band filter banks, pitch,
and strength, among other features. Here, our goal is
to treat this as a computer vision problem where cer-
tain visual clues are useful, depending on the context
of the spectrogram. The CNN makes for an interesting
extractor, especially with the down-sampling of features
acquired through max pooling. This is actually inspired
by the mammal’s primary visual cortex as described in
[14], where the orientation of selective simple cells with
overlapping local receptive fields, or sub regions were
identified. The network operates locally [15] convolving
with filters over an image and is able to recognize simi-
lar avatars, regardless of their actual position. We believe
that the use of filter masks could be another useful feature
which the CNN offers to phoneme recognition. These are
some advantages over other neural networks which are
unable to deal with this type of translational variance of
local distortions from the input, as is pointed out in [16].
This gives the CNN a higher level of robustness against
distortions due to speaker variability and noise, both of
which are much needed in the current state-of-the-art
ASR applications.

We classify the extracted features using a hierar-
chical tree with predefined articulatory groups where
each node contains an SVM. The articulatory groups
were inspired by the hierarchical grouping suggested by
Peter Ladefoged [13]. The SVM was selected because
it provides supervised learning guarantees due to the
Vapnik—Chervonenkis (VC) theory [17] and the princi-
ple of structural risk minimization. The hierarchical tree
structure was chosen for two reasons: (i) to overcome the
unbalanced data problem and (ii) to deal with the sample
and feature sizes generated in pre-processing and feature
extraction phases. We believe that a good way to work
with these problems is to combine a knowledge-driven
recipe with a machine learning algorithm, thus simpli-
fying the classification space while saving time, since a
SVM with a large amount of samples can become pro-
hibitively costly to train. When less classes are used for
classification, we can more confidently implement data
augmentation techniques to balance the dataset based on
specific, discriminative features. In other words, a two or
three class problem creates a simpler hypothesis space
than a 40 class problem. Also, in higher nodes we can
make a better sample selection and use a voting system or
similar approaches, whereas in the lower nodes, smaller
problems with multiple machines parallelizes the train-
ing set which has been divided up among discriminative
phonemic classifications. These strategies for the CNN
and SVM optimize the power of each, thus adherent to

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

the paper’s goal, to present an acoustic model with high
accuracy given limited resources, both in the senses of
computational processing power as well as training data.

In this paper, we will first discuss the related work in
phoneme recognition, divided into several subsections, in
an attempt to present a triage of results to better under-
stand the state of the art in this field, being (1) CNN,
(2) HTSVM, and (3) studies which are most impacted by
acoustic model results.

Then, we will go into the relevant details about the
corpus used for this study and explain the procedures
used when treating the raw data and the spectrograms
generated from it. After that, we will discuss the fea-
ture extraction via CNN and classification done by the
HTSVM used to produce the following two sections which
present experiments and results and then the convergence
analysis of the models. Finally, we will have a discus-
sion to sum up this work followed by the conclusion and
speculations about future work.

For the interested reader, this work expands on the study
presented in [18]. We have added a great many details
about the process which were not present in the confer-
ence paper and have provided statistical learning guaran-
tees via convergence analysis to evidence the robustness
of this method.

Related work

Phoneme recognition is not a new task as explored in
[19-21], but greater success has been achieved only in the
last 5 years [3] and still remains far from a solved prob-
lem. One of best known studies proving the capabilities
of CNN for this task is [22], where a hybrid CNN-HMM
model using local filtering and max pooling in the fre-
quency domain is proposed to deal with the translational
invariance problem present in other DNN. In [23], the
optimal CNN architecture is explored including the num-
ber of convolutional layers and hidden units needed, as
well as the optimal pooling strategy and feature type for
the CNN and the best results are achieved using large cor-
pora (300—400 h) and a two-convolutional layer DNN with
with 424 hidden units and four fully connected layers with
2048 hidden units each, followed by a softmax layer with
512 output targets.

State of the art using CNN for speech recognition

Abdel-Hamid, et al. [15] revisits the issue of robustness
in speaker and environment variation with a CNN-HMM
where the HMM deals with the issue of distortions of
over time, while the CNN convolves over the frequency to
take advantage of its ability to deal with variation among
speakers in this domain. This study serves as a baseline
on TIMIT for the state-of-the-art deep CNN with a 21.6%
PER (phone error rate). It should be noted that the net-
work in that paper initializes pre-trained weights from

Page 3 0of 12

another network trained on the much larger Google voice
search database with 18 h of speech data. The authors do
not explain how the strings are generated for comparison
with the original TIMIT annotations but one can assume
that some post-processing is done to reduce the frames
to phonemes. A general issue, for proper comparison of
acoustic models, is that state-of-the-art methods, which
use large deep networks with thousands of units and often
thousands of hours of training data, do not show frame-
level results as in [15, 22-27]. As outlined in [3], they
often employ a number of resources like pronunciation
models, language models, and other post-processing/data
smoothing techniques which are of great help for the end
speech-recognition applications; however, they also mask
the true recognition accuracy achieved by the acoustic
model.

State-of-the-art using HTSVM for speech recognition
Hierarchical classification has not been often applied to
the phoneme recognition task but some notable excep-
tions exist, like [28-31]. In [28], phoneme classification
is treated as an optimization problem where a hierar-
chical tree structure, which divides groups of phonemes
as nodes in the tree. The authors found that the tree
would tolerate small tree-induced errors while avoiding
gross errors as a standard multi-class classifier would
be prone to commit. In the last 3 years, the HTSVM
has been employed using data from speech corpora and
applied to a phoneme recognition task as presented in
[29-31]. In [30], an experiment on stop and fricative
consonants using the Lithuanian LTDIGITS corpus, con-
taining over 25,000 phonemes, is presented. The most
important findings were a 3% gain in the overall accu-
racy, a total of 68.4%, while reducing 52-55% of the
computational time taken for classification with SVM.
In [29], a Tamil corpus of repeated words was devel-
oped and 2400 phoneme instances were tested resulting
in about 67% total accuracy on obstruent and sonorant
sounds using MFCC features. In [31], a study on the
TIMIT corpus presents MFCC classification results for
each phoneme and major confusions classified by SVM
as well. Most of the phonemes fall between the accu-
racy range of 30% and 60%. The authors point out that
due to the multiple dialects present in the TIMIT cor-
pus, many phonemes are pronounced similarly to others
depending on the speaker, increasing the confusion rate
for similar phonemes, where the SVM was not capable
of efficiently classifying phonemes in the lower nodes of
the tree.

State of the art in acoustic modeling

We will divide this topic in two lines of research and
three subsections: (i) forced alignment (FA) and (ii) phone
error rate (PER), and related to PER PER frame error rate

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

(FER) will have its own section. We want to draw spe-
cial attention to the FA results since these experiments are
not impacted by a language model; still, they do use pro-
nunciation models, which are known to be essential for
producing good results. So the division is done between
FA results and metrics for acoustic modeling. In scope of
this this section, we focus on stand-alone methods which
present a training set and a validation set to generate
results for the acoustic model without pretraining from
larger databases or great adaptation techniques.

Forced alignment (FA)

This section is indirectly related to acoustic modeling, but
since it is free of post-processing and great data manipu-
lations, it is an interesting area to look at from our per-
spective. This is a logical choice because we can assume
that without errors generated by a language model and
assuming that the pronunciation model is well designed,
FA results would present the best results possible for an
acoustic model, since the actual target orthography is pre-
sented a priori. Phonetic alignments can be generated in
one of two ways: (i) manually, usually with the help of
specialized software or (ii) automatically, as is done with
FA. Manual alignment guarantees a high level of quality
but is not free of subjectivity and is a high cost activity.
Normally, at least two specialist transcribers are required
to generate a kappa score or something similar and it is
time consuming. According to [32], manual transcription
requires more than 13 h/min of audio. Often, researches
opt for automatic solutions like FA. One the most used
tools in the industry is HTK’s HVite [33]. Studies like [34]
show that forced alignment can be as accurate as 75.09%
for errors of less than or equal to 10 ms and 93.92% for
errors of less than or equal to 20 ms for English. These
results are interesting because they give some insight to
the actual frame accuracy of these acoustic-pronunciation
model systems and are both reliable and reproducible.

Phone error rate

PER is the industry standard for measuring the accuracy
of acoustic models and is calculated by the the Lev-
enshtein distance [35] where the number of insertions,
deletions, and substitutions are added and divided by the
total number of phonetic units in the string.

Often, word error rate (WER) is calculated in the same
way using the number of recognized words in a sentence;
however, good WER results come from a good tandem of
both acoustic and language models. This task is still far
from resolved but has enjoyed great improvement in the
last couple of years from 27.3% in 2009 [36] to 17.7% in
2013 [37], both tested on the TIMIT database. Again, it is
important to point out that the results presented there are
reported for entire systems and not for the acoustic model
inisolation, also [37] uses a pre-trained network. Since it is

Page 4 of 12

difficult to find reliable state-of-the-art phoneme recogni-
tion results which do not use a great amount of data isolate
the acoustic model, the next subsection presents FER.

Frame error rate

Some studies do report FER which represents the true
accuracy of the acoustic model. In [38], a hybrid CNN and
layer-fused multi-layer perceptron (MLP) with inputs of
11 frames of 25ms (step of 10 ms) as context from the
TIMIT database and presents both PER and FER results,
where the best network, with 1024 neurons in the input
layer and 512 in the hidden layer, was able to obtain a FER
of 43.04%. In [39], a hierarchical broad-phoneme MLP-
HMM hybrid classifier was used with window widening
which achieved impressive results. For a 90 ms window
the FER was 61% using their past-future method that
achieved 42% using 170 ms and 17 frames for context
training every other frame along the right and left side of
the central frame for that period. It should be noted that
these experiments were done with the full 61 phoneme set
and results for smaller windows with 39 phonemes are not
presented.

Dataset, features, and machine learning algorithms
In the following sub-sections, the HTSVM architecture
used in this work will be explained, step by step, from the
corpus used, pre-processing steps and labeling to the fea-
ture extraction, classification, and finally post-processing
procedures. One of the goals of this paper is to be as
transparent as possible in order to better understand
what is required to build robust acoustic models. The full
pipeline, which will be explained in detail throughout this
section, can be seen in Fig. 1.

Dataset: TIMIT automatic segmentation

TIMIT corpus

The TIMIT corpus, developed by Texas Instruments and
the Massachusetts Institute of Technology [40], is a speech
corpus, meant to be used for speech research and to serve
as a gold standard for results comparison. TIMIT con-
tains phonetically balanced prompted recordings of 2342
unique sentences (two dialect sentences (SA), 450 pho-
netically compact sentences (SX) and 1890 phonetically
diverse sentences (SI)) from 630 speakers of eight major
dialects of American English, each reading ten phoneti-
cally rich sentences to total 6300 utterances (5.4 h). The
full training set contains 4620 utterances. The test set con-
tains 1344 utterances from 168 speakers. With the excep-
tion of SA sentences which are usually excluded from
tests, the training and test sets do not overlap and fol-
low the suggested corpora splits outlined in [40]. TIMIT
is considered a “balanced” corpus with respect to the dis-
tribution of phonemes and triphones found in the English
language but it also follows a typical Zipf curve, as one

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1 Page 5 of 12
4 HMM) 4 CNN) (" HiEracHicALTREE)
LABELER FEATURE EXTRACTOR SVM

SPECTOGRAMS

voting (4x)

PER

Y

SMOOTHING
SVM SVM SVM

obstuents silence sonorants

-

(. J

Fig. 1 CNN-HTSVM architecture defined for the experiments

would expect to find in a speech corpus, where some
phoneme sequences dominate a large portion of the sam-
ples and a large number of phonemes are less frequent.
From a machine learning perspective, this is an unbal-
anced dataset. Normally, as we have done in this paper, the
phone set is collapsed into 39 monophones as suggested
in [41] for training and testing. The decision to collapse
them from the beginning was made in order to make the
hypothesis space less confusing with such little data. The
data is considered “clean” and has no great variations in
amplitude or clipping.

TIMIT automatic segmentation

In order to build a full pipeline for low-resourced language
situations, the label generation was delegated to an auto-
matic labeler, pre-trained with only one hour of data using
HTK [33].

To improve the performance of this tool, some adjust-
ments were made, mainly a rule-based script was created
to generate multiple pronunciations for each word in the
pronunciation dictionary, as shown in Table 1. This was
done to account for co-articulation and the eight dialects
used in the TIMIT database and some light manual revi-
sion of difficult cases was done.

Then, the labeler was trained using FA provided by
HTK’s HVite tool on the rest of the TIMIT training set.

Spectrogram images

For each audio file, sampled at 16 kHz, spectrograms were
created by sox [42], using the fast Fourier transform (FFT)
from time windows of 25 ms as Hann windows with a
stride of 10 ms. This means that each window originally
consisted of 400 samples (25 ms x16kHz). The images
were then resized to 5 x 128 pixel images resulting in
a DFT size of 254. As explained earlier, this was done
in order to reduce the number of features extracted to
a manageable dimensionality while prioritizing the fre-
quency domain (which is simply reduced in the number
of pixels equally over the entire image) and not the time
domain since the time domain is handled by the HMM

labeler. When a sentence ended in a number of millisec-
onds which is not divisible by 25, the last frame was
squeezed into the penultimate frame (in all cases, this
was silence). This process yielded 1,447,869 images for
training and 482,623 for testing.

Feature extraction

CNN is a deep learning technique, which presents
good results in several domains [16], including speech
processing [15, 22, 23].

As mentioned earlier, the biological motivations
prompted us to employ a CNN to extract relevant features
from the spectrogram images, conserving only the most
important information. The advantage of the CNN in this
application is the identification of local recurrence infor-
mation and its invariant translation in data [11, 43, 44].
CNNs are tolerant to distortion as they combine local
receptive fields, shared weights, and spatial sub-sampling.
All three of which are useful in phoneme recognition [22].
The trick comes in balancing the spatial resolution reduc-
tion with the representational richness of the images in

Table 1 Example excerpt from the augmented pronunciation

model

Word Transcription
Your CHAOR
Your CHER
Your CHOWR
Your CHUHR
Your JHAOR
Your JHER
Your JHOWR
Your JHUHR
Your YAOR
Your Y ER
Your Y OWR
Your YUHR

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

order to generate the most useful feature maps at a low
classification cost with high accuracy [11]. We perform
this in two ways:

1 We rescale the image to a smaller size. The goal was
to find the smallest images possible, while still
preserving the most important information for
phoneme classification. The a priori decision was
that the frequency domain was the most important
since the time domain is not handled here!. Some
experiments were done with small portions of data
(about 10,000 samples) to arrive at the final size of
5 x 128 pixels. We also experimented with several
window types, especially those which least distort the
edges like Hann and Blackman-Harris windows. The
final decision was to use the Hann window after
experiments.

2 We optimize the feature maps by searching for the
best sized masks. The size of the masks and number
of neurons were estimated according to the adapted
false nearest neighbors (FNN) algorithm proposed in
[45]. We generated the best five configurations found
by the algorithm and then selected the one with the
largest mask size and fewest neurons. This selection
was mostly systematic although the decision between
the final configurations was slightly subjective as we
preferred larger mask sizes to fewer neurons where
the difference was small. This “feeling” was guided by
the logic that the largest avatar which best represents
the data is the best choice for strong generalizations.
The final configuration is composed of 38
convolutional units with a 29 x 1 mask size. In the
case of the sub-sampling layer, max pooling was used
with 38 units and sized at 5 x 5, without overlapping.
ReLU (rectified linear unit) was applied as the
activation function due to its widespread adoption in
the literature. This function avoids negative values
and maintains the scale of output values. The CNN
was trained using the Keras [46] package developed
with the TensorFlow library. The 988 feature
dimensions were generated using half or “same”

padding as (ceiling 12%5) x 38 = 988. Where

128 x 5 is the size of the input images, 5 x 5 is the
pooling size and 38 is the number of neurons used.
Observe that the half padding always rounds up
using the ceiling function.

We should also mention that we generated only sin-
gle frames for classification and not nine or eleven for
context as in other studies [38, 47]. We leave those exper-
iments for future work on purpose, because our goal here
is to focus on the usefulness of the CNN as a feature
extractor for small datasets, contrary to the popular belief
that the CNN requires a lot of data. To satisfy the readers

Page 6 of 12

curiosity, after 30 training epochs, the CNN settled at a
cross-entropy loss of 1.0533. Also, it took less than half
an hour to execute the CNN on a computer with 8 GB
of RAM and conventional hardware (Intel i7). We believe
this information is important because it shows that this
careful technique can be applied even in low-resource
scenarios.

Classification

The proposed method takes advantage of the machine
learning techniques used for CNN and SVM and attempts
to improve accuracy and minimize their disadvantages
with a knowledge-based hierarchical tree structure.

The features produced by the CNN were classified using
a SVM, since it has been used in literature combined with
CNN and has provided good results in many domains.
In addition, SVM provides a strong learning guarantee
according to statistical learning theory (SLT) and large-
margin bounds [17, 48]. The SVM parameters were found
empirically after several experiments. The selected ker-
nel for final experiments was a fourth-order polynomial
kernel with coef0= 1 (as a non-homogeneous kernel)
and a cost C = 10,000. As in other studies on natu-
ral language processing problems, like [49, 50], we found
a polynomial kernel to be more useful for this task than
a radial basis function (RBF) kernel. This is not surpris-
ing since the Zipf-like class distributions for these tasks
are similar. For this task, namely speech recognition on
the TIMIT dataset, we have two main problems to solve.
First, the number of CNN extracted features combined
with the number sample frames, since the SVM training
time increases quadratically as the number of examples
increases. The second problem, is the unbalanced nature
of the dataset, a common characteristic for most speech
corpora.

For the first issue, the hierarchical structure is what
makes the SVM a viable option. The cost of training
a sequential SVM on this dataset of almost 1.5 million
images with our 988 dimensions would be prohibitive and
even with a great deal of work in data reduction tech-
niques, it would still likely take several months to train
the model. By dividing the task into several hierarchical
levels based on the knowledge of articulatory phonetic
classifications in English as described in [13], we are able
to turn the problem into a binary, ternary, or quaternary
classification instead of the original 40 classes. Ladefoged
suggests a hierarchical structure necessary for English fea-
tures in the last chapter of [13]. Although his tree is not
a binary decision tree, but rather features 129 overlapping
leaves with multiple paths, the idea of using articula-
tory features to classify phonemes was inspired by that
approach. This served as the primary source for our tree
which was derived as possible questions to classify each
phoneme so that they contain the features necessary for

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

classification. This makes our classification space much
more simple when creating the support vectors. It should
be noted that the first layer classifying obstruents, silence,
and sonorants is built using four individually trained
machines on equal chunks of data where the prediction
for this layer is made by a simple voting system where
the mode is taken as the final prediction. This was done
to further reduce the training time since at this stage we
have the largest amount of data in the tree and the sim-
plest hypothesis space, given that the features are most
distinct between silence, obstruents, and sonorants than
in lower nodes of the tree. The hierarchical structure
is presented in Fig. 2. Note that the final nodes in the
HTSVM produce the respective classes within the final
category for a total of 40 classes. This number comes
from the suggested 39 monophones from [41] plus the
silence class. It should be noted that silence frames are not
used in the classification results to be consistent with the
literature.

In the second issue, we deal with an unbalanced
dataset where even minimal pairs can have a large dif-
ference in frequency as in the example of /k/ and /g/
which are both velar stops. In the training set, the
phoneme /k/ appears in 60,433 frames, whereas /g/ is
found in only 17,727. In order to build a robust sys-
tem, it is important to learn this phonemic distinction
and minimize the influence of probability in the training
set. We were able to deal with this by using the syn-
thetic minority over-sampling technique (SMOTE) [51]
data augmentation technique. The synthetic creation of
minority samples allows us to treat the classification
task with more confidence. This was also made possi-
ble by the hierarchical approach because each node has
a much smaller number of samples than the original
dataset.

Page 7 of 12

PER smoothing

In order to obtain PER, the classified frames must be con-
verted to phonemes. This was done by taking the mode
of all of the SVM classifications for each GMM-HMM-
generated boundary, initially produced by the HMM
labeler as seen in Fig. 1, thus collapsing repeated frame
classifications into single phonemes. In other words, the
values of the initial labels are not actually used, just the
boundaries so that a decision can be made for each one.
Since each boundary contains multiple frames classified
by the SVM, a single value is calculated by taking the
mode of all frames within the respective boundary. In
the case where classifications across boundaries produced
the same results, that boundary ceased to exist. The
acoustic model used in the HMM labeler is the model
trained by [34] on the SCOTUS corpus. Smoothing is an
important step because it avoids likely misclassifications
from the frame level, for example: a single frame classi-
fied as a phoneme A between two frames classified as a
phoneme B seems extremely unlikely. Also in the case of a
long co-articulation or heavy aspiration the beginning or
ending of a phoneme could be confused with an entirely
different sound but as time goes on this should become
more clear.

Experiments

As a baseline comparison to the proposed method, we
used one of the most popular ASR toolkits for a database
the size of TIMIT, the HTK toolkit [33]. A triphone HTK
model was trained on the same TIMIT training set used
in our method, and recognition was performed on the test
set with a zero-gram language model, with only the indi-
vidual monophones as the pronunciation model. This was
done in order to obtain only the posterior values from
the acoustic model predictions without the influence of

CNN

feature

extractor

SVM
voting (4x)
Obstuents Silence Sonorants
SVM SVM SVM
hh Fricatives| Stops Affricates Lig./Glid. Nasals Vowels

(svm](svm](svm](svm]

(svm) (svm] (svm)

Liquids

Glides Front Back Central

(svm)

(svm) (svm](svm](svm)

Fig. 2 HTSVM architecture defined for the experiments

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

a language or pronunciation model for fair comparison,
since we are only evaluating the accuracy of the acous-
tic model. We used 31 Gaussian components because this
number is one which we have found useful in the past. It
is higher than what is recommended by the voxforge tuto-
rial at [52], which uses 15 and is similar to the models used
by Keith Vertanen at [53], where he uses a maximum of 32
for the Wall Street Journal and TIMIT datasets together.
The model was trained using MFCC 0DANZ acoustic fea-
tures, where 0 use zeroth cepstral coefficient, D is for
the delta coefficients, A for acceleration coefficients, com-
puted as delta of delta coefficients, N is for absolute energy
suppression and Z is zero mean normalization. The pre-
dictions were then segmented in the same fashion as the
proposed method with 25 ms sliding windows and a step
of 10 ms, in order to make a frame by frame comparison.

Along with the HTK model, we also trained a simple
MLP with one hidden layer, 100 neurons, a ReLu acti-
vation function and an Adam solver. The choice for 100
neurons was made because it does not saturate the net-
work. We experimented with larger configurations like
1000 neurons but no more than an overall accuracy gain of
0.6% was obtained, and the loss did not improve at 1.992.
After running multiple experiments, it seems that this
was due to chance since some experiments were slightly
lower and some higher. Deeper architectures with two or
three layers presented worse results of about a 5 to 8%
drop in accuracy over several experiments. We believe
that this is due to the complexity of the network and is
an expected result due to the small dataset. The learning
rate and all other hyperparameters used the default val-
ues from the MLPClassifier from [54] which was heavily
based on the work in [55]. The network is also very similar
to the one used in [39]. Again, for consistency, we chose
to use a strong baseline network without hyperparameter
tuning. This was done to show the gain provided by the
HTSVM structure over another widely used classifier for
the classification of CNN features.

Results

For each model, we calculated the FER and F1 scores since
accuracy can be misleading at times when dealing with a
number of less frequent phonemes. This was done first on
a frame by frame analysis. Then, we smoothed the data
by removing frame repetitions in order to collapse them
into sequential phonemes. For the latter, we were also able
to calculate the PER, the industry standard for measur-
ing the accuracy of acoustic models; it is calculated by
the Levenshtein distance [35] where the number of inser-
tions, deletions, and substitutions were added and divided
by the total number of phonetic units in the string. It
should be noted that for fair comparison, we use the same
39 phonemes, which has become the standard for evalua-
tion [56], omitting silence. T test results yielded less than

Page 8 of 12

0.01 between classifiers, evidencing that the results were
significantly different.

Table 2 presents the F1 scores and FER of the GMM-
HMM, CNN-MLP, and CNN-HTSVM models for frame
classifications as well as the PER in the case of phoneme
classification. The FER was calculated as an accuracy
score, PER was calculated by the conventional Leven-

shtein edit distance [35] and the F1 score was calculated
2 % precisionxrecall
as precision+recall®

Independent of the model’s accuracy, it is also impor-
tant to understand what sort of errors the model is actually
committing. Table 3 lists the 15 most frequent errors
committed by each system, including the true values,
predicted values, and the confusion percentage.

The confusion percentage for each true class is defined
as the percentage of all occurrences which were misclas-
sified as the predicted class. In the table, it becomes clear
that our method is only confused in the most turbulent
shattering cases were a great overlap in discriminative
features occurs.

Convergence analysis

As previously mentioned, an important part of our work
deals with learning guarantees. In this section, we discuss
the learning convergence of the CNN network and the
SVM model employed in this paper. SLT provides theo-
retical support for such convergence proofs in terms of
how supervised learning algorithms generalize examples.
Equation 1 defines the main principle of SLT which is the
empirical risk minimization [48] to bound the divergence
€ between the empirical risk Remp, i.e., the error measured
in a sample, and the expected risk R(f), i.e., the expected
error while assessing the joint probability distribution of
examples and their respective classes, as the sample size
n tends towards infinity. Still describing the equation, the
right-most term is known as the Chernoff bound, f is a
given classifier, and F is the space of admissible func-
tions provided by some supervised algorithm, a.k.a. the
algorithm bias [17, 48, 57].

P(iule (f) = Romp ()] = e) < 2e7 N (1)
eF

Vapnik [17] proved a bound for supervised learn-
ing algorithms considering the shattering coefficient

Table 2 F1 Scores in frames, frame error rates and phone error
rates for each model

Classifier F1 Score FER% PER%
GMM-HMM 0.166 76.36 7517
CNN-MLP 0.225 56.97 52.90
CNN-HTSVM 0.491 37.04 3541

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

Table 3 Most frequent FER confusion percentages in
GMM-HMM and CNN-HTSVM models where the true phoneme
was confused as being the predicted phoneme

GMM-HMM CNN-HTSVM

True Pred Conf (%) True Pred Conf (%)
S z 33.14 S z 15.16
ih uw 16.00 ay ae 39.64
t ch 17.58 ao aa 26.58
er r 3246 r er 18.84
ao I 28.00 sh S 26.01
iy y 14.23 aa ae 16.07
s sh 10.09 ah ae 14.79
ae t 14.32 t S 761
ih z 10.07 iy ih 6.48
w ao 4552 er r 7.64
iy uw 12.80 er r 10.64
k eh 11.55 z S 18.01
ih t 7.70 ay aa 15.78
ah | 16.67 t S 10.61
d t 14.46 iy ih 9.48

N (F,2n), as defined in Eq. 2. Such a coefficient is a
measure function to compute the complexity of the algo-
rithm bias, i.e., the cardinality of functions contained in
the space F that produce different classification outputs,
provided a sample size n. Throughout our formulation,
we employ the generalization bound defined in Eq. 4, a
further result obtained from Eq. 2, to ensure that the
expected risk is bounded by the empirical risk plus an
additional term associated to the shattering coefficient
and some probability § (Eq. 3).

» qup R() ~ Rory ()] =) N 2
eF

()

p(sup)~ o (0] =) <5

8§ = 2N (F, 21/1)6_”52/4

3)

R() < Ramp(f) +/4/n (log 2N (F, m) — log(®)) (4)

In the case of the SVM, the same bound is formu-
lated as shown in Eq. 5, in which c is some constant, R
corresponds to the dataset radius, and p represents the
maximal margin.

R() < Remp(f) + e/ (R2/p? — log(1/6)) (5)

Page 9 of 12

In this context, we assessed our CNN and SVM to
understand the sample size they require to ensure learning
in the context of speech recognition, allowing to esti-
mate their expected risk value over unseen examples. The
CNN architecture used is composed of one convolutional
layer with 38 units whose mask size is 29 x 1, as esti-
mated using the adapted FNN [45]. The mask size and
the number of units are important parameters to esti-
mate the shattering coefficient for a single CNN layer
used in our experiments. Considering the formulation
proposed in [58], Eq. 6 defines the shattering coefficient
for a single unit in the CNN layer, in which /4 is the
space dimensionality and n corresponds to the sample
size. Thus, Eq. 7 corresponds to the shattering coefficient
for all 38 units in this layer, in which p is the number of

hyperplanes.
h n—1 29x1 n—1
flm) =2 (;)=2Z< l) ©)
i=0 i=0
h RN 29x1 38
CNN(n):ZZ(” i 1) =2)" (” l. 1)
i=0 i=0

7)

Now, we proceed by computing the generalization
bound for the CNN (Eq. 4), as shown in Eq. 8. Considering
8 = 0.05, that represents a probability of 0.95 (i.e., 95%) to
ensure that the empirical risk Remp (f) is a good estimator
for the expected risk R(f), meaning the error results mea-
sured for our classifier indeed work on unseen examples.
Observe that our CNN requires at least 216,640 examples
to converge, while we had in practice 1,447,869 examples
in training set.

In addition, we can employ another result from [17]
to prove that our CNN converges. Equation 9 considers
the most relevant term to prove the learning conver-

gence, analyzing Eq. 8 [17, 48]. Notice that as bgc%

approaches zero, term \/4-/n(log(2CNN(n)) — log(0.05))
from Eq. 8 goes to zero, remaining the empirical risk as an
assessment measure of the learning performance.

R(f) < Remp(f) + v/4/n(log(2CNN (1)) — log(0.05))
®)

1
lim og{CNN (n)} ~0

n—00 n

))

Next, the SVM is also analyzed considering Eq. 5. In
this case, we have an accuracy of 0.61 leading to v(f) =
1—accuracy = 1—-0.61 = 0.39, R = 3,332, 567 (the radius
we estimated for the whole dataset) and p = 173, 869, 050

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

as the maximal margin found. Consequently, the gener-
alization bound for our SVM is defined in Eq. 10. Also,
considering § = 0.05 as before, and ¢ = 4 as taken in the
default formulation (Eq. 4), notice our SVM requires at
least 1476 examples to converge, while we had in practice
1,447,869 examples in the training set.

R(f) <0.39

+ \/ 4/n(3,332,5672/173,869,0502 — log(1/8))
(10)

Based on [58], we formulated the shattering coeffi-
cient for our CNN architecture that was composed of a
single convolutional layer. The shattering coefficient of
the SVM was also calculated, according to SLT [17, 48].
Those formulations ensure our framework presents learn-
ing guarantees in the context of speech recognition.

Discussion

Most errors committed by the HTSVM were made
between similar phonemes as found in [31], many of
which unlikely would be perceived by human listeners. For
example, the confusion between /s/ and /z/ are likely pro-
duced by the database itself where speakers may mix the
two or use them interchangeably, where it is semantically
unimportant [59], or even produce a partially vocalized
fricative. This shows that the algorithm is quite promis-
ing, since it avoided gross errors which are common in
many modern acoustic modeling algorithms like GMM-
HMM. The issue between similar phonemes seems to be
one which could be corrected by a robust language and/or
pronunciation model. Also, since such a small window of
25 ms was used, some of the vowels, especially diphthongs
like /ay/ were damaged. Studies like [29] use nine frames
for classification and [60] suggest at least 100 ms for con-
text which prompted [38] to use 11 frames (110ms) as
context for classification. While our system is more accu-
rate in frame classification than the system in [38], our
PER is worse. This is probably also due to the small win-
dow size where unnecessary insertions are made in the
phoneme strings.

The combination of features extracted from single
frames by a simple and shallow CNN classified by the
HTSVM produced similar accuracy results to that study
on a more difficult task as we were classifying full utter-
ances which include pauses, co-articulation, and a greater
variation in pronunciation and not only single words and
likely more careful speech. It is also important to note that
some errors, like the case of the vowels which are close
in the vowel space, could have been caused by the TIMIT
transcriptions themselves, where, in some dialects, these
sounds could be very similar or even some sound in
between. It was also interesting that the results are not far

Page 10 of 12

from the state-of-the-art forced alignment results where a
pronunciation dictionary is employed for disambiguation.
This shows that not only is the recognition robust but also
that the CNN-HTSVM seems promising for automatic
segmentation as well, either as a stand-alone algorithm or
a post-processor. We believe that the take home point of
this paper is that a quite robust acoustic model can be built
even with a simple architecture and dataset when carefully
constructed. Robust means that the results are similar to
related recent studies with a 37.04% FER, and the conver-
gence analysis provides sufficient evidence that the model
will infer unseen data well, guaranteeing that the results
were not obtained by chance.

Conclusions and future work

We have shown that even with the large dimensionality
of the CNN features, a shallow CNN-HTSVM architec-
ture can be useful in scenarios where a large abundance of
data is not available. Our method shows similar or better
results on the same corpus than the most recent HTSVM
methods and outperforms other works using few frames
for classification as well as the traditional GMM-HMM
classifier and an MLP classifier using the same CNN
features. We also make a contribution towards the com-
parison of acoustic models by presenting a breakdown of
frame and phoneme accuracy with F1 scores which were
not available in many of the previous studies, as well as
an analysis of the convergence of the model, providing
more information about the true robustness, facilitating
the assessment of state-of-the-art acoustic models.

As future work, our CNN-HTSVM pipeline could take
advantage of some fine-tuning. Since most errors were
made between very similar phonemes and diphthongs, it
would be interesting to investigate this issue further. As a
first step, one could implement something along the lines
of a backtracking system in the tree where after a pre-
liminary decision is made in the node (especially in the
final node), a second node could check for likely errors
according to predefined rules. As a second solution to this
problem, one could add more frames to the classification
stage as employed in other studies. It also would be use-
ful to investigate other features which could be added to
better disambiguate some of the more frequent errors, for
example, acoustic features to indicate voicing for sono-
rants and some fricatives or voice onset time between
stops and fricatives. We also believe that the CNN will be
even more valuable when applied to a noisy database or
a database with more classes and we are currently explor-
ing this scenario. We plan to revise the CNN architecture
by adding more convolutional layers and possibly greater
max pooling to reduce the dimensionality. This would
allow for more efficient experiments. The sample size
could also be reduced by calculating the distances from
support vectors, using only the most important examples.

Shulby et al. Journal of the Brazilian Computer Society (2019) 25:1

Therefore, we believe that the error rates should decrease
significantly even on small datasets like TIMIT and similar
datasets for other languages. A future work should explore
the use of different language models which should smooth
the errors produced by the acoustic model.

Endnote
I The time domain is to be handled by the HMM labeler.

Abbreviations

ASR: Automatic speech recognition; CNN: Convolutional neural network; FER:
Frame error rate; FFT: Fast fourier transform; FA: Forced alignment; FNN: False
nearest neighbors; GMM-HMM: Gaussian mixture models - hidden Markov
models; HTSVM: Hierarchical tree support vector machine; MCT:
Multi-conditional training; MFCC: Mel-frequency cepstrum coefficients;

MLP: Multi-layer perceptron; PER: Phone error rate; RBF: Radial basis function;
SLT: Statistical learning theory; SMOTE: Synthetic minority over-sampling
technique; VC: Vapnik-Chervonenkis; WER: Word error rate

Acknowledgements
We would like to thank our colleagues in the NILC laboratory for their input
and support.

Funding

We would like to thank CNPq for the grants 441583/2014-8, 303051/2014-0
and 302077/2017-0 as well as FAPESP for the grants 2013/07375-0 and
2017/16548-6, all to RM. Also, we thank Capes for the grant PROEX-7901561/D
to MF.

Availability of data and materials

All material used in this paper is open-source and can be downloaded for uses
according to the public licenses provided their origins. The TIMIT corpus can
be found at the Linguistic Data Consortium: https://catalog.ldc.upenn.edu/
|dc93s1. For the machine learning algorithms, we used the CNN from Keras:
https://keras.io/layers/convolutional/ and the SVM from scikit learn: https://
scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.
SVC. The SMOTE algorithm can be found in the imbalanced learn repository:
https://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.
over_sampling. SMOTE.html. All non-default parameters for these algorithms
are given here in this article. For FA and HMM training HTK can be obtained at
https://htk.eng.cam.ac.uk/. The htklabel plugin was used for manual revision
and can be found in the CPrAN repository at: https://cpran.net/plugins/
htklabel/ or the bleeding edge version in my github repository: https://github.
com/CShulby/plugin_htklabel.

Authors’ contributions

CS has developed the acoustic model and pipeline presented in this paper as
a core part of his PhD thesis. MF developed the algorithm for intelligent CNN
mask selection based on her adaptations of the false-nearest-neighbors
algorithm which is part of her PhD thesis. RM provided the convergence
analysis, which is part of his current research. SM contributed in the literature
review and organization of the machine learning algorithms presented as the
first author’s advisor. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 18 March 2018 Accepted: 21 October 2018
Published online: 04 January 2019

References
1. Witt SM (2012) Automatic error detection in pronunciation training:
where we are and where we need to go. Proc IS ADEPT 6:1-8

20.

21.

22.

23.

24.

25.

26.

Page 11 of 12

Li K, Qian X, Meng H (2017) Mispronunciation detection and diagnosis in
12 english speech using multidistribution deep neural networks.
|IEEE/ACM Trans Audio Speech Lang Process 25(1):193-207

Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, Senior A,
Vanhoucke V, Nguyen P, Sainath TN, et al (2012) Deep neural networks for
acoustic modeling in speech recognition: the shared views of four
research groups. IEEE Signal Proc Mag 29(6):82-97

Chan A (2005) 10 Common Pitfalls of using SphinxTrain. http://www.cs.
cmu.edu/~archan/10CommonPitfallsST.html. Accessed: 12 Oct 2016
Cieri C, Miller D, Walker K (2004) The Fisher corpus: a resource for the next
generations of speech-to-text. In: LREC, vol.4. pp 69-71

Panayotov V, Chen G, Povey D, Khudanpur S (2015) Librispeech: an ASR
corpus based on public domain audio books. In: 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
pp 5206-5210

Chen X, Eversole A, Li G, Yu D, Seide F (2012) Pipelined back-propagation
for context-dependent deep neural networks. In: Interspeech, Portland.
pp 26-29

May T (2017) Robust speech dereverberation with a neural
network-based post-filter that exploits multi-conditional training of
binaural cues. In: IEEE/ACM Trans Audio, Speech, and Lang Process

Kim TY, Han CW, Kim S, Ahn D, Jeong S, Lee JW (2016) Korean LVCSR
system development for personal assistant service. In: Consumer
Electronics (ICCE), 2016 IEEE International Conference On. IEEE, Las Vegas.
pp 93-96

Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2016) Understanding
deep learning requires rethinking generalization. In: CoRR. https://doi.
org/abs/1611.03530

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning
applied to document recognition. Proc IEEE 86(11):2278-2324
Krizhevsky A, Sutskever |, Hinton GE (2012) Imagenet classification with
deep convolutional neural networks. In: Advances in Neural Information
Processing Systems. pp 1097-1105

Ladefoged P, Disner SF (2012) Vowels and consonants. 3rd.
Wiley-Blackwell, Malden, MA

Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. J Physiol 160(1):
106-154

Abdel-Hamid O, Mohamed A-R, Jiang H, Deng L, Penn G, Yu D (2014)
Convolutional neural networks for speech recognition. IEEE/ACM Trans
Audio Speech Lang Process 22(10):1533-1545

LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and
time series. Handb Brain Theory Neural Netw 3361(10):1995

Vapnik V (2013) The Nature of Statistical Learning Theory. In: Paperback,
2nd. Springer, New York

Shulby CD, Ferreira MD, de Mello RF, Aluisio SM (2017) Acoustic modeling
using a shallow CNN-HTSVM architecture. In: 2017 Brazilian Conference
on Intelligent Systems (BRACIS). IEEE, Uberlandia. pp 85-90

Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ (1989) Phoneme
recognition using time-delay neural networks. IEEE Trans Acoust Speech
Signal Proc 37(3):328-339

Lee H, Pham P, Largman Y, Ng AY (2009) Unsupervised feature learning
for audio classification using convolutional deep belief networks. In:
Advances in Neural Information Processing Systems. pp 1096-1104

Hau D, Chen K (2011) Exploring hierarchical speech representations with
a deep convolutional neural network. In: UKCI 2011 Accepted Papers. p 37
Abdel-Hamid O, Mohamed A-R, Jiang H, Penn G (2012) Applying
convolutional neural networks concepts to hybrid NN-HMM model for
speech recognition. In: 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, Kyoto. pp 4277-4280
Sainath TN, Mohamed A-R, Kingsbury B, Ramabhadran B (2013) Deep
convolutional neural networks for LVCSR. In: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, Vancouver.
pp 8614-8618

Mohamed A-R, Dahl GE, Hinton G (2012) Acoustic modeling using deep
belief networks. I[EEE Trans Audio Speech Lang Process 20(1):14-22
Graves A, Jaitly N (2014) Towards end-to-end speech recognition with
recurrent neural networks. In: ICML. vol. 14. pp 1764-1772

Maas AL, Hannun AY, Jurafsky D, Ng AY (2014) First-pass large vocabulary
continuous speech recognition using bi-directional recurrent DNNS. In:
CoRR. https://doi.org/abs/1408.2873

https://catalog.ldc.upenn.edu/ldc93s1
https://catalog.ldc.upenn.edu/ldc93s1
https://keras.io/layers/convolutional/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
https://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
https://htk.eng.cam.ac.uk/
https://cpran.net/plugins/htklabel/
https://cpran.net/plugins/htklabel/
https://github.com/CShulby/plugin_htklabel
https://github.com/CShulby/plugin_htklabel
http://www.cs.cmu.edu/~archan/10CommonPitfallsST.html
http://www.cs.cmu.edu/~archan/10CommonPitfallsST.html
https://doi.org/abs/1611.03530
https://doi.org/abs/1611.03530
https://doi.org/abs/1408.2873

Shulby et al. Journal of the Brazilian Computer Society

27.

28.

29.

30.

31

32.

33.

34.
35.
36.

37.

38.

39.

40.

41.

4.
43,
44,

45.

46.
47.

48.

49.

50.

(2019) 25:1

Téth L (2015) Phone recognition with hierarchical convolutional deep
maxout networks. EURASIP J Audio Speech Music Proc 2015(1):25

Dekel O, Keshet J, Singer Y (2004) An online algorithm for hierarchical
phoneme classification. In: International Workshop on Machine Learning
for Multimodal Interaction. Springer, Martigny. pp 146-158

Karpagavalli S, Chandra E (2015) A hierarchical approach in tamil
phoneme classification using support vector machine. Indian J Sci
Technol 8(35):57-63

Driaunys K, Rudzionis V, Zvinys P (2015) Implementation of hierarchical
phoneme classification approach on LTDIGITS corpora. Inf Technol
Control 38(4):303-310

Amami R, Ellouze N (2015) Study of phonemes confusions in hierarchical
automatic phoneme recognition system. In: CoRR. https://doi.org/abs/
1508.01718

Schiel F, Draxler C, Baumann A, Ellbogen T, Steffen A (2012) The
production of speech corpora. epub uni-muenchen

Young S, Evermann G, Gales M, Hain T, Kershaw D, Liu X, Moore G, Odell J,
Ollason D, Povey D, et al (2002) The HTK book. Cambridge Univ Eng Dept
3:175

Yuan J, Liberman M (2008) Speaker identification on the SCOTUS corpus. J
Acoust Soc Am 123(5):3878

Levenshtein VI (1966) Binary codes capable of correcting deletions,
insertions, and reversals

Hifny Y, Renals S (2009) Speech recognition using augmented conditional
random fields. IEEE Trans Audio Speech Lang Process 17(2):354-365
Graves A, Jaitly N, Mohamed A-R (2013) Hybrid speech recognition with
deep bidirectional Istm. In: Automatic Speech Recognition and
Understanding (ASRU), 2013 IEEE Workshop On. IEEE, Olomouc.

pp 273-278

Lombart J, Miguel A, Lleida E (2013) Articulatory feature extraction from
voice and their impact on hybrid acoustic models. In: Advances in Speech
and Language Technologies for Iberian Languages. Springer, Las Palmas
de Gran Canaria. pp 138-147

Lopes C, Perdigéo F, et al (2009) Phonetic recognition improvements
through input feature set combination and acoustic context window
widening. In: 7th Conference on Telecommunications, Conftele. Citeseer,
Porto. pp 449-452

Garofolo J, Lamel L, Fisher W, Fiscus J, Pallett D, Dahlgren N (1990) The
DARPA TIMIT acoustic-phonetic continuous speech corpus, NTIS speech
disc. NTIS order number PB91-100354

Lee K-F, Hon H-W (1989) Speaker-independent phone recognition using
hidden Markov models. IEEE Trans Acoust Speech Signal Process
37(11):1641-1648

Bagwell C (2018) Sox(1) - Linux man page. https://linux.die.net/man/1/
sox. Accessed: 01 Mar 2018

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521(7553):436-444

lan Goodfellow AC, Yoshua Bengio (2016) Deep learning. The MIT Press,
Cambridge. http://goodfeli.github.io/dlbook/. Accessed 18 Mar 2018
Ferreira MD, Corréa DC, Nonato LG, de Mello RF (2018) Designing
architectures of convolutional neural networks to solve practical
problems. In: Expert Systems with Applications 94(Supplement C).

pp 205-217. https://doi.org/10.1016/j.eswa.2017.10.052

Chollet F, et al (2015) Keras. https://keras.io. Accessed 18 Mar 2018
Bromberg |, Qian Q, Hou J, Li J, Ma C, Matthews B, Moreno-Daniel A,
Morris J, Siniscalchi M, Tsao Y, Wang Y (2017) Detection-based ASR in the
automatic speech attribute transcription project. In: Proceedings of The
Interspeech 2017, 18th Annual Conference of the International Speech
Communication Association. ISCA, Stockholm, Sweden. pp 1829-1832.
https://doi.org/10.21437/Interspeech.2017

von Luxburg U, Schélkopf B (2011) Statistical learning theory: models,
concepts, and results, vol. 10. Elsevier, North Holland, Amsterdam,
Netherlands. Max-Planck-Gesellschaft

Chang Y-W, Hsieh C-J, Chang K-W, Ringgaard M, Lin C-J (2010) Training
and testing low-degree polynomial data mappings via linear svm. J Mach
Learn Res 11(Apr):1471-1490

Goldberg Y, Elhadad M (2008) splitSVM: fast, space-efficient, non-heuristic,
polynomial kernel computation for NLP applications. In: Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics
on Human Language Technologies: Short Papers. Association for
Computational Linguistics, Columbus. pp 237-240

51

52.

53.

54.

55.

56.

57.

58.

59.
60.

Page 12 of 12

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic
minority over-sampling technique. J Artif Intell Res 16:321-357

MacLean K (2018) Tutorial: create acoustic model - manually. http://www.
voxforge.org/home/dev/acoustichnodels/linux/create/htkjulius/tutorial/
triphones/step-10. Accessed: 1 Mar 2018

Vertanen K (2018) HTK acoustic models. https://www.keithv.com/
software/htk/us/. Accessed: 1 Mar 2018

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn:
machine learning in Python. J Mach Learn Res 12:2825-2830

Hinton GE (2011) Connectionist learning procedures. Artif Intell
40(1-3):185-234. https://doi.org/10.1016/0004-3702(89)90049-0

Lopes C, Perdigao F (2012) Phone recognition on the TIMIT database. In:
Speech Technologies. https://doi.org/10.5772/17600

de Mello RF, Ferreira MD, Ponti MA (2017) Providing theoretical leaming guarantees
to deep leaming networks. In: CoRR. https://doi.org/abs/1711.10292

de Mello FR, Antonelli Ponti M, Grossi Ferreira CH (2018) Computing the
shattering coefficient of supervised learning algorithms. ArXiv e-prints.
http://arxiv.org/abs/1805.02627

Hoffmann S, TIK E (2009) Automatic phone segmentation. Corpora 3:2-1
Yang HH, Van Vuuren S, Sharma S, Hermansky H (2000) Relevance of
time—frequency features for phonetic and speaker-channel classification.
Speech Comm 31(1):35-50

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/abs/1508.01718
https://doi.org/abs/1508.01718
https://linux.die.net/man/1/sox
https://linux.die.net/man/1/sox
http://goodfeli.github.io/dlbook/
https://doi.org/10.1016/j.eswa.2017.10.052
https://keras.io
https://doi.org/10.21437/Interspeech.2017
http://www.voxforge.org/home/dev/acousticmodels/linux/create/htkjulius/tutorial/triphones/step-10
http://www.voxforge.org/home/dev/acousticmodels/linux/create/htkjulius/tutorial/triphones/step-10
http://www.voxforge.org/home/dev/acousticmodels/linux/create/htkjulius/tutorial/triphones/step-10
https://www.keithv.com/software/htk/us/
https://www.keithv.com/software/htk/us/
https://doi.org/10.1016/0004-3702(89)90049-0
https://doi.org/10.5772/17600
https://doi.org/abs/1711.10292
http://arxiv.org/abs/1805.02627

	Abstract
	Keywords

	Introduction
	Related work
	State of the art using CNN for speech recognition
	State-of-the-art using HTSVM for speech recognition
	State of the art in acoustic modeling
	Forced alignment (FA)
	Phone error rate
	Frame error rate

	Dataset, features, and machine learning algorithms
	Dataset: TIMIT automatic segmentation
	TIMIT corpus
	TIMIT automatic segmentation

	Spectrogram images
	Feature extraction
	Classification
	PER smoothing

	Experiments
	Results
	Convergence analysis
	Discussion
	Conclusions and future work
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

