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Abstract

Constructing models that allow for iterated changes is one of the most studied problems in the literature on belief
change. However, up to now, iteration of expansion was only studied as a special case of consistent revision and, as far
we know, there is no work in the literature that deals with expansions into inconsistency in a supraclassical framework.
In this paper, we provide a semantics for iterated expansion, as well as its axiomatic characterization. We extend the
model to two well-known families of iterated belief change (natural and lexicographic). Iteration of expansion can be
combined with existent models of iteration of revision and contraction. Since we are able to accommodate different
inconsistent belief states, iteration of expansion allows us to define new belief change functions that are currently
only defined for belief bases: semi-revision, external revision, as well as consolidation.
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Introduction
Belief revision addresses the problem of changing a
knowledge base in the presence of new information. The
main paradigm in the literature is known as the AGM the-
ory, after the initials of the authors of the seminal paper
[1]. AGM distinguishes three different kinds of change:
expansion, where new information is simply added to
the knowledge base; contraction, where information is
removed; and revision, where new information is added
preserving logical consistency, i.e., removing previous
information if needed.
The AGM theory has been widely criticized for not pro-

viding a framework where the change operations can be
iterated. The AGM operations come equipped with some
choice mechanism which depends on the initial knowl-
edge base. After applying the operation, we have a new
set, but no choice mechanism for it. Darwiche and Pearl
have enriched the AGM theory with extra postulates to
deal with iterated revision [10]. Meanwhile, several newer
proposals appeared for iterated revision (see [25] for an
overview), but only a few dealing with contraction [4, 23,
28]. Expansion is usually a very simple operation, and
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when the new information is consistent with the exist-
ing knowledge base it can be seen as a special case of
revision. But the case of expansion into inconsistency has
been overlooked in the iterated change literature.
In the AGM framework, a knowledge base is repre-

sented by a belief set, a set of formulas closed under (clas-
sical) logical consequence. This means that if the result
of an expansion is inconsistent, all information is lost as
there is a unique inconsistent belief set, corresponding to
the full language. However, this is highly unintuitive as we
think about iterated change operations. Inconsistency can
be momentaneous and disappear after the next change.
As the example below shows, contracting after an expan-
sion into inconsistency should not always lead to the same
result.

Example 1 Ann and Bob believe that the restaurant
around the corner is always open for lunch. While being
happily married, they do not share the same political
convictions. While Ann admires the new president and
thinks he is trustworthy, Bob is sure the president is not
to be trusted. One day, they arrive at the corner at lunch
time and see that the restaurant is closed. For a moment,
they both hold inconsistent beliefs. When they notice the
inconsistency, they solve it by contracting the belief that
the restaurant is always open for lunch. And each one
continues to hold his own view on the president.
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Up to now, inconsistent expansions have only been dealt
with in the belief base change literature [12, 16], where the
knowledge base is represented by an arbitrary set of sen-
tences, not necessarily closed under logical consequence.
Testa, Coniglio, and Ribeiro have recently defined a model
for belief states that can deal with inconsistency [30].
Furthermore, they defined external and semi-revision for
belief sets. However, they use a paraconsistent logic,
whereas in our work we use supraclassical logic. In this
paper, we tackle the problem of iterated change involving
inconsistent expansions applied to belief sets. We adopt
the representation proposed in [10], where belief sets are
just one of the components of a more complex belief state.
This allows us to account for different belief states even if
the belief sets are inconsistent, as in the example above.
We then provide an axiomatization and semantics for iter-
ated expansion that covers the inconsistent case, as well as
a representation result.
This paper is organized as follows: In “Background”

section we introduce the formal preliminaries, the classi-
cal AGMmodel and its extension to iterated belief change.
In “Iteration of expansion” section, we define the for-
mal apparatus for iteration of expansion for belief sets.
“Different kinds of iterated expansion functions” section
is devoted to introducing additional properties to cre-
ate different kinds of iterated expansion functions. In
“Applications” section, we use iteration of expansion to
define semi-revision, external revision, and consolidation
for belief states. Finally, in the last two sections we develop
a concrete example of iteration of expansion and conclu-
sions and future work.

Background
In this section, we briefly introduce the notation and
background needed for the rest of the paper.

Formal preliminaries
Wewill assume a language L of finite set of atomic propo-
sitions that is closed under truth-functional operations.
The elements of L are denoted by lower case Greek let-
ters α, β , . . . (possibly with subscripts). � stands for an
arbitrary tautology and ⊥ for an arbitrary contradiction.
We shall make use of a consequence operation Cn that
takes sets of sentences to sets of sentences and which sat-
isfies the standard Tarskian properties, namely, inclusion,
monotony, and iteration. Furthermore, we will assume that
Cn satisfies supraclassicality, compactness, and deduction.
We will sometimes use Cn(α) for Cn({α}), A � α for
α ∈ Cn(A), � α for α ∈ Cn(∅), A �� α for α �∈
Cn(A), �� α for α �∈ Cn(∅). K is reserved to represent
a belief set (i.e., K = Cn(K)). Since L is finite, we can
define a belief set as a propositional sentence ϕ, such that
K = Cn(ϕ).

An important class of subsets of L are its inclusion-
maximal consistent subsets, more commonly called pos-
sible worlds. The set of possible worlds will be denoted
by W. Given a set of sentences A, the set consisting of all
the possible worlds that contain A is denoted by ‖A‖. The
elements of ‖A‖ are called A-worlds. ‖ϕ‖ is an abbrevia-
tion of ‖{ϕ}‖ and the elements of ‖ϕ‖ are the ϕ-worlds.
To any set of possible worlds V , we associate a belief set
Th(V) given by Th(V) = ⋂

V − under the assumption
that

⋂∅ = L. If M is a set of possible worlds, we denote
by αM a formula such that ‖αM‖ = M. If ≤ is a total pre-
order (a total and transitive relation), then 
 is a notation
for the associated equivalence relation (a 
 b iff a ≤ b
and b ≤ a), and < is the notation for the associated strict
order (a < b iff a ≤ b and b �≤ a).

The AGMmodel for belief change
In the model proposed by Alchourrón, Gärdenfors, and
Makinson, there are three change operations for a belief
set K (or ϕ, when K = Cn({ϕ})):

• Expansion. A sentence α is added to the belief set and
nothing is removed (represented as K + α);

• Contraction. A sentence α is removed (unless α is a
tautology) from the belief set and nothing is added
(represented as K − α);

• Revision. A sentence α is added to the belief set, and
at the same time, other sentences are removed if
necessary to ensure the consistency of the revised set
(represented as K ∗ α).

Expansion is the simplest operation and is defined as
K + α = Cn(K ∪ {α}) or ϕ + α ≡def ϕ ∧ α when
K = Cn(ϕ). Alchourrón, Gärdenfors, and Makinson have
proposed two sets of independent postulates to govern
the process of belief contraction and revision [1]. Katsuno
and Mendelzon rephrased these postulates for a finite
language [18].

(R1) ϕ ∗ α � α

(R2) If ϕ ∧ α � ⊥, then ϕ ∗ α ≡ ϕ ∧ α

(R3) If α � ⊥, then ϕ ∗ α � ⊥
(R4) If ϕ1 ≡ ϕ2 and α1 ≡ α2, then ϕ1 ∗ α1 ≡ ϕ2 ∗ α2
(R5) (ϕ ∗ α) ∧ ψ � ϕ ∗ (α ∧ ψ)

(R6) If (ϕ ∗ α) ∧ ψ � ⊥, then ϕ ∗ (α ∧ ψ) � (ϕ ∗ α) ∧ ψ

Along with this definition, Katsuno and Mendelzon
provided a representation theorem that shows an equiv-
alence between the postulates and a revision mechanism
based on total pre-orders where these are defined as the
following:

Definition 1 LetW be the set of all worlds of L. A func-
tion that maps each sentence ϕ inL to a total pre-order≤ϕ

on worldsW is called a faithful assignment if and only if1:
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1. If ϕ ∈ ω1 and ϕ ∈ ω2, then ω1 =ϕ ω2
2. If ϕ ∈ ω1 and ϕ /∈ ω2, then ω1 <ϕ ω2

Their representation theorem shows that a revision
operator is equivalent to a faithful assignment where the
result of a revision ϕ ∗ α is determined by α and the total
pre-order assigned to ϕ:

Proposition 1 Katsuno and Mendelzon [18] A revision
operator ∗ satisfies postulates (R1) – (R6) precisely when
there exists a faithful assignment that maps each sentence
ϕ into a total pre-order ≤ϕ such that

‖ϕ ∗ α‖ = min(‖α‖,≤ϕ)

where ‖α‖ is the set of all worlds satisfying α and
min(‖α‖,≤ϕ) contains all worlds that are minimal in ‖α‖
according to the total pre-order ≤ϕ , i.e., all the worlds that
include α and are closest to ϕ.

Iterated change
In order to represent iterated (repeated) belief change, we
need models in which the outcome of a belief contraction
or a belief revision can itself be contracted or revised. This
is not possible if the outcome of a contraction or revi-
sion consists only of a new belief set. It also has to contain
information on how that new belief set will be changed
in response to new inputs. Whereas standard AGM oper-
ations take us from a complete belief state (belief set +
change mechanism) to an incomplete belief state (belief
set only), for iterated change, we need operations that take
us from a complete belief state to another complete belief
state.
The most influential formulation of this approach is due

to Darwiche and Pearl:

Definition 2 Darwiche and Pearl [10] Let there be a set
E of objects called belief states. A belief state is an object �

to which we associate a propositional formula B(�) that
denotes the current beliefs of the agent in the epistemic
state.

Darwiche and Pearl modified the list of the Katsuno and
Mendelzon postulates for revision to work in the more
general framework of belief states:

(R*1) B(� ∗ α) � α nem[(R*2)] If B(�) ∧ α � ⊥, then
B(� ∗ α) ≡ B(�) ∧ α

(R*3) If α � ⊥, then B(� ∗ α) � ⊥
(R*4) If �1 = �2 and α1 ≡ α2, then B(�1 ∗ α1) ≡ B(�2 ∗

α2)
(R*5) B(� ∗ α) ∧ ψ � B(� ∗ (α ∧ ψ))

(R*6) If B(� ∗ α) ∧ ψ � ⊥, then B(� ∗ (α ∧ ψ)) �
B(� ∗ α) ∧ ψ

For the most part, the Darwiche and Pearl postulates
are obtained from the Katsuno and Mendelzon ones by
replacing each ϕ by B(�) and each ϕ ∗ α by B(� ∗ α). The
only exception to this is (R*4), which is stronger than its
simple translation.
In addition to this set of basic postulates, Darwiche and

Pearl proposed a set of postulates devoted to iteration:

(DP1) If α � μ, then B((� ∗ μ) ∗ α) ≡ B(� ∗ α)

(DP2) If α � ¬μ, then B((� ∗ μ) ∗ α) ≡ B(� ∗ α)

(DP3) If B(� ∗ α) � μ then B((� ∗ μ) ∗ α) � μ

(DP4) If B(� ∗ α) � ¬μ, then B((� ∗ μ) ∗ α) � ¬μ

In [5, 17], admissible revision operators are defined
as operators satisfying (DP1), (DP2), and a new postu-
late (P) (note that (DP3) and (DP4) can be obtained as
consequences:

(P) If B(� ∗ α) �� ¬μ, then B((� ∗ μ) ∗ α) � μ

The semantics for iterated revision is defined as follows:

Definition 3 [10, 18] Let � be a belief state. A total pre-
order ≤� on possible worlds, with the strict part <� and
the symmetric part 
� , is a faithful assignment associated
with the belief state� if and only if the following conditions
hold for every ω,ω′ ∈ W:

1. If ω � B(�) and ω′ � B(�), then ω 
� ω′.
2. If ω � B(�) and ω′ �� B(�), then ω <� ω′.

Observation 1 Darwiche and Pearl [10] Let � be a
belief state:

1. An operation ∗ on � satisfies (R*1)–(R*6) if and only
if there is a faithful assignment ≤� for � such that
‖B(� ∗ α)‖ = min(‖α‖,≤�).

2. ∗ also satisfies (DP1)–(DP4) if and only if ≤� satisfies:

(DPR1) If α ∈ ω1 and α ∈ ω2, then ω1 ≤� ω2 if and
only if ω1 ≤�∗α ω2.

(DPR2) If ¬α ∈ ω1 and ¬α ∈ ω2, then ω1 ≤� ω2 if
and only if ω1 ≤�∗α ω2.

(DPR3) If α ∈ ω1, ¬α ∈ ω2 and ω1 <� ω2, then
ω1 <�∗α ω2.

(DPR4) If α ∈ ω1, ¬α ∈ ω2 and ω1 ≤� ω2, then
ω1 ≤�∗α ω2.

In terms of faithful assignment, postulate (P) corre-
sponds to the following property [5, 17]:

(R-P) If α ∈ ω1, ¬α ∈ ω2, and ω1 ≤� ω2, then ω1 <�∗α

ω2.

The original AGM postulates for contraction [1]
were adapted to propositional finite logic and belief
states [8]:
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(C-1) B(�) � B(� − α)

(C-2) If B(�) �� α, then B(� − α) � B(�)

(C-3) If B(� − α) � α, then � α

(C-4) B(� − α) ∧ α � B(�)

(C-5) If B(�1) = B(�2) and α1 ≡ α2, then B(�1 − α1) ≡
B(�2 − α2)

(C-6) B(� − (α ∧ ψ)) � B(� − α) ∨ B(� − ψ)

(C-7) If B(� − (α ∧ ψ)) �� α, then B(� − α) � B(� −
(α ∧ ψ))

For the case of iterated contraction, the following are
the counterpart of Darwiche and Pearl’s iterated revision
postulates [9, 19]:

(DP-1) If α � ¬μ, then B((� − μ) ∗ α) ≡ B(� ∗ α)

(DP-2) If α � μ, then B((� ∗ μ) − α) ≡ B(� ∗ α)

(DP-3) If B((� ∗ α) � ¬μ, then B((� − μ) ∗ α) � ¬μ

(DP-4) If B((� ∗ α) � μ, then B((� − μ) ∗ α) � μ

(P-) If B((� ∗ α) � μ, then B((� − μ) ∗ α) � ¬μ

Iteration of expansion
In order to define iteration of expansion, we first need to
define what it means to expand a belief state:

Definition 4 Let � be a belief state. + is an expansion
function for � if and only if B(� + α) ≡ B(�) ∧ α.

Observation 2 Let � be a belief state and ≤�

its associate faithful assignment. Then ‖B(� + α)‖ =
min(W,≤�) ∩ ‖α‖.

Due to the definition of revision, B(� + α1 + · · · + αn),
iteration of expansion is well defined when B(� + α1 +
· · · + αn) �� ⊥. In order to cover the inconsistent case,
we need to adapt the (DP1) – (DP4) and (P) postulates for
expansion:

(DP1+) If α � μ, then B((� + μ) ∗ α) ≡ B(� ∗ α)

(DP2+) If α � ¬μ, then B((� + μ) ∗ α) ≡ B(� ∗ α)

(DP3+) If B(� ∗ α) � μ, then B((� + μ) ∗ α) � μ

(DP4+) If B(� ∗ α) � ¬μ, then B((� + μ) ∗ α) � ¬μ

(P+) If B(� ∗ α) �� ¬μ, then B((� + μ) ∗ α) � μ

Given the revision postulates (R1)–(R6), (P+) is stronger
than (DP3+) and (DP4+).
To provide a semantics for iteration of expansion, we

have to solve the same problem as in the syntactic level,
i.e., when B(� + α1 + · · · + αn) � ⊥ and hence,
‖B(� + α1 + · · · + αn)‖ = ∅. Therefore, we propose to
extend the set of possible worlds by adding ω⊥ = L, that
we call impossible world2. We denoteW+ = W ∪ {ω⊥}.

Definition 5 Let � be a belief state. A total pre-order
≤� onW+, with the strict part<� and the symmetric part


� , is an extended faithful assignment associated with the
belief state � if and only if the following conditions holds:

1. If ω � B(�) and ω′ � B(�), then ω 
� ω′.
2. If ω � B(�) and ω′ �� B(�), then ω <� ω′.

Note that for all � , ω⊥ ∈ ‖B(�)‖, so the two conditions
in Definition 5 always hold for the impossible world.
Expansion and revision, in terms of extended faithful

assignment can be easily adapted as follows:

Observation 3 Let � be a belief state and ≤� its asso-
ciate extended faithful assignment. Then ‖B(� + α)‖ =
min(W+,≤�) ∩ ‖α‖.

When B(� + α) � ⊥, min(W,≤�) ∩ ‖α‖ = ∅ whereas
min(W+,≤�) ∩ ‖α‖ = ω⊥

Observation 4 Let � be a belief state. An operation ∗
on � satisfies (R1)–(R6) if and only if there is an extended
faithful assignment ≤� for � such that ‖B(� ∗ α)‖ =
min((‖α‖ \ ω⊥),≤�) ∪ ω⊥.3

We can enrich extended faithful assignment with some
additional properties in order to define the iteration of
expansion for belief states:

(DPR1+) If α ∈ ω1 and α ∈ ω2, then ω1 ≤� ω2 if and
only if ω1 ≤�+α ω2.

(DPR2+) If ¬α ∈ ω1 and ¬α ∈ ω2, then ω1 ≤� ω2 if and
only if ω1 ≤�+α ω2.

(DPR3+) If α ∈ ω1, α �∈ ω2 and ω1 <� ω2, then
ω1 <�+α ω2.

(DPR4+) If α ∈ ω1, α �∈ ω2 and ω1 ≤� ω2, then
ω1 ≤�+α ω2.

(R-P+) If α ∈ ω1, α �∈ ω2, and ω1 ≤� ω2, then ω1 <�+α

ω2.

Theorem 1 Let � be a belief state. Let + be an expan-
sion on � . Then + also satisfies:

1. (DP1+) if and only if ≤� satisfies (DPR1+).
2. (DP2+) if and only if ≤� satisfies (DPR2+).
3. (DP3+) if and only if ≤� satisfies (DPR3+).
4. (DP4+) if and only if ≤� satisfies (DPR4+).
5. (P+) if and only if ≤� satisfies (R-P+).

On the impossible world ω⊥
The most controversial point of our work is, undoubt-
edly, the definition of the impossible world ω⊥.
Although in our case, ω⊥ is mainly a technical device
in order to preserve the untouchable formal appara-
tus of classical faithful assignment, the controversy
about impossible worlds has a long tradition in
Philosophy4.
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The impossible world has also been called non-normal
world. Non-normal worlds were introduced by Saul
Kripke in [20] to provide a semantics for modal logic
where the necessitation rule was not valid. Zalta pointed
out that

[t]hese atypical worlds have been used in the following
ways: (1) to interpret unusual modal logics, (2) to distin-
guish logically equivalent propositions, (3) to solve the
problems associated with propositional attitude con-
texts, intentional contexts, and counterfactuals with
impossible antecedents, and (4) to interpret systems of
relevant and paraconsistent logic [31].

One of the first attempts to develop a metaphysical the-
ory and a deep analysis of impossible worlds was due
to Priest [26]. In this paper, he pointed out that in gen-
eral, non-normal worlds were defined as a mere technical
device with no real significance. According to Priest, non-
normal worlds are essentially those where theorems, that
is, semantically logical truths, may fail. In the rest of the
paper, he analyzed the essence of impossible worlds, their
semantics, and proof theory. Later, Priest [27] has edited
a special issue of the Notre Dame Journal of Formal Logic
to discuss the topic [24].
In our case, ω⊥ plays a technical role in order to guaran-

tee that even in the presence of inconsistency, parts of the
underlying order of a belief state are preserved and play a
role when consistency is regained.

Different kinds of iterated expansion functions
Postulates (DP1+)–(DP4+) and (P+) offer a conceptual
schema to define iterable expansion operations. As in the
case of revision, we can extend them by means of addi-
tional properties in order to define more specific oper-
ations. We can adapt to belief expansion the following
well-known iterable belief change functions:
Natural expansion is adapted from natural revision [6,

7, 29] (also called conservative). This operation is conser-
vative in the sense that it only makes the minimal changes
of the pre-order that are needed to accept the input. In
expansion by α, the minimal ¬α-worlds (with the excep-
tion of ω⊥) are moved one step up from the bottom
of the pre-order which is otherwise left unchanged. The
distinctive characteristics of this operation are

(CRNat1) If ω1 ∈ min(‖α‖,≤�) and ω2 �∈ min(‖α‖,≤�

), then ω1 <�+α ω2.
(CRNat2) If ω1 �∈ min(‖α‖,≤�) and ω2 �∈ min(‖α‖,≤�

), then ω1 ≤� ω2 if and only if ω1 ≤�+α ω2.

Lexicographic expansion is adapted from lexicographic
revision [21, 22]. When expanding by α, this operation
rearranges the pre-order by placing all the α-worlds at the
bottom (but preserving their relative order) and all the

¬α-worlds at the top (but preserving their relative order).
It is defined by the following property:

(CRLex) If α ∈ ω1 and α �∈ ω2, then ω1 <�+α ω2

Applications
In the context of belief bases, Hansson has proposed three
new operations that may involve inconsistent belief states:

• External revision [12]. Consists in first expanding
with the new information and then contracting by its
negation (as in Example 1). The intermediate state
may be inconsistent.

• Consolidation [11]. Consolidating a belief base
amounts to making it consistent, possibly giving up
previous beliefs.

• Semi-revision [13]. Semi-revision is an alternative
operation of belief revision, where the agent receives
an input and then decides whether or not to
incorporate it into the belief set. This means that it is
a form of non-prioritized revision, i.e., the new
information may be discarded5. One possible way to
implement a semi-revision function is similar to
external revision, but the second step is a
consolidation instead of a contraction, i.e.,
ϕ?α = ϕ + α − ⊥ .

In this section, we discuss how these operations may be
transferred from the belief base to the belief state setting,
allowing us to maintain the elegance of belief sets.
One important advantage of distinguishing different

inconsistent belief states is that this feature can be used
to construct two different types of revision operations
based on contraction, depending on whether the nega-
tion of the added sentence is contracted before or after
its addition:

Definition 6 Let � a belief state, + an expansion func-
tion and − a contraction function. Then,

� ∗ α = (� − ¬α) + α is an internal revision.
Alchourrón et al. [1]
� ∗ α = (� + α) − ¬α is an external revision.
Hansson [12]

Recall Example 1, where Ann and Bob first expand into
inconsistency and then contract by the negation of the
new information (the restaurant is not open).
External revision recovers from inconsistency by a con-

traction by the negation of the input. However, it is pos-
sible to recover consistency without specifying an input
sentence by consolidating the belief state:

Definition 7 A consolidation function for a belief state
� , denoted by � ! is a function such that B(� ! ) �� ⊥.
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Observation 5 Let � a belief state and ∗ a revision
operator for ∗. Then, � ∗ � is a consolidation function.

Consolidation can be combined with expansion to con-
struct semi-revision:

Definition 8 Let � a belief state, + an expansion func-
tion, and ! a consolidation function. ? is a semi-revision for
� if and only if

�?α = (� + α)!

Note that as a result of the consolidation, the input sen-
tence may be discarded. Furthermore, the consolidation
process may even discard both α and ¬α.
Example 1 revisited
Suppose that instead of seeing that the restaurant is

closed, Ann and Bob receive this information from a
friend. In this case, even if they still have a contradiction,
the new information is not necessarily more important
than the previous one. Consequently, it is more natural
that they perform a semi-revision instead of an exter-
nal revision. In the end, each one can believe that the
restaurant is open, closed, or be agnostic with respect
to that.

Postulates for semi-revision
Let us now look to the semi-revision of belief states in
more detail. Postulates for semi-revision were originally
proposed by Hansson in [13] in the context of belief bases.
Here, we adapt them to belief states.
The first postulate says that if α is consistent with B(�),

then α must be accepted:

(SR1) If B(�) ∧ α � ⊥, then B(�?α) � α

The following postulates are variations of revision pos-
tulate (R2):

(SR2) B(�) ∧ α � B(�?α)

(SR2’) If B(�) ∧ α � ⊥, then B(�?α) � B(�) ∧ α

(SR2”) If B(�) ∧ α � ⊥, then B(�?α) ≡ B(�) ∧ α

(R3) can be strengthened in the following way, as in
semi-revision, an inconsistent input can be rejected:

(SR3) B(�?α) � ⊥
(R4) is about the irrelevance of syntax. Consequently, it

is reasonable to maintain it in semi-revision:

(SR4) If �1 = �2 and α1 ≡ α2, then B(�1?α1) ≡
B(�2?α2)

Another interesting question is to see when a sentence
may be discarded in the semi-revision process:

(SRR) If B(�) � β and B(�?α) �� β , then there exists
ϕ′ such that B(�) ∧ α � ϕ′ � B(�?α), ϕ′ �� ⊥, but
ϕ′ ∧ β � ⊥.

Observation 6 Let � be a belief state, − a contraction
function, and ? a semi-revision function on � defined as
B(�)?α = B(�) + α − ⊥. Then ? satisfies (SR1), (SR2),
(SR2’), (SR3), (SR4), and (SRR).

Note that (SR2) together with (SR2’) entails that if α is
consistent with the original belief state, that semi-revision
by α is the same as an expansion by α.

A concrete example
In this section, we work out an example step by step in
order to illustrate the use of iterated expansion.

Example 2 Nat and Lex share the following political
convictions: “If the economy grows, then we have a good
government” and “If there is a cut in the budget assigned
to education, then we have a bad government.” On Fri-
day, they watch a TV program about economy, where some
important economists state that the economy is growing.
On Saturday, in the news, a reporter comments that the
government will make a big cut in the budget assigned
to education. On Sunday, they discover that their beliefs
imply a contradiction and both try to solve it by consoli-
dating their beliefs.

This example can be modeled by the following logical
representation: we take three propositional variables, p, q,
and r in this order, encoding respectively the economy is
growing, there is a cut in the budget assigned to education,
andwe have a good government. The original beliefs of Nat
and Lex are p → r and q → ¬r. We will denote the epis-
temic state of Nat by � and the epistemic state of Lex by
�. Thus, ‖B(�)‖ = ‖B(�)‖ = ‖(p → r) ∧ (q → ¬r)‖ =
{ω⊥, 000, 001, 101, 010}. We will also assume (as their
names suggest) that Nat will use a natural iteration strat-
egy and Lex a lexicographic one. For the sake of simplicity,
we will complete the rest of the initial belief states by
means of the Hamming distance [3]6.
We will use the following convention for the graphi-

cal representation of the pre-orders. Black lines represent
levels in the preorder, where the minimal elements (that
correspond to B(�)) are placed on the bottom line. Thus,
the initial belief states are
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After Nat expands by p, we obtain

After Nat expands by q

After Lex expands by p

After Lex expands by q

The outcomes of applying consolidation (revising by �)
differ in both cases:

‖B(((� + p) + q) ∗ �)‖ = {ω⊥, 101}
‖B(((� + p) + q) ∗ �)‖ = {ω⊥, 110, 111}
Note that Nat now believes that we have a good govern-

ment whereas Lex has no belief about it. This shows that
even if both run into inconsistent belief states after the
expansions, the states are different since they use different
expansion strategies.

Conclusion and future work
In this paper, we have filled the existing gap in
iteration functions for AGM by providing iteration
of expansion, which coincides with iteration of revi-
sion in the consistent case and that can be com-
bined with contractions and revision functions. Thus,
it is now possible to create sequences of changes like
� + α − β + γ ∗ δ . . .

We defined and characterized the basic model and
showed two families of iteration of expansion. Moreover,
we use iteration of expansion to bring from belief bases
to belief sets the functions of external revision, consolida-
tion, and semi-revision.

There are numerous research paths opened by this
work:

• In belief bases, neither external or internal revision is
a special case of the other [12]. It is still an open
question whether both operations coincide for belief
states.

• We will analyze which properties emerge in the
combination of the three AGM belief change
functions, sharing or not the same strategies (i.e., all
of them lexicographic or combine lexicographic
contraction with natural expansion).

• We will investigate if there exist interesting families
of iterated expansion functions that are not
necessarily related to the classical families of iterated
revision or contraction.

• We would like to further explore the relation between
our model and the paraconsistent model proposed in
[30] looking for possible mappings between them.

Endnotes
1ω1 <ϕ ω2 is defined as ω1 ≤ϕ ω2 and ω2 �≤ϕ ω1, and

ω1 =ϕ ω2 is defined as ω1 ≤ϕ ω2 and ω2 ≤ϕ ω1.
2 Strictly speaking, impossible world is not a world but

only a technical apparatus. We use this denomination
since its behavior in the model will be the same as the
behavior of the possible worlds. This is further motivated
on “??” section

3The proof of this observation is virtually the same as
the proof of Theorem 3.3. in [18] and Theorem 9 in [10].

4 For an overview see [2]
5 For an overview of this kind of functions see [14].
6 The Hamming distance dH between two interpreta-

tions ω1 and ω2 is the number of propositional variables
on which the two interpretations differ, i.e., dH(ω,ω′) =
|{a ∈ P | ω(a) �= ω′(a)}|. The Hamming distance
between an interpretation ω and a set of interpretations X
is dH(ω,X) = minω′∈X dH(ω,ω′).

Appendix: Proofs
Lemma 1 Hansson [15] Let � be a belief state and −

a revision function on � that satisfies (C1)–(C7). Then −
satisfies

(CR) If B(�) � β and B(�) − α �� β , then there exists
ϕ′ such that B(�) � ϕ′ � B(�) − α; ϕ′ �� α and
ϕ′ ∧ β � α.

Proof of Theorem 1
1) (⇒) Assume (DP1+) holds. Let μ ∈ ω1 and μ ∈ ω2.
Let α ≡ α{ω1,ω2}. Due to α � μ, we obtain by (DP1+)
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that B((� + μ) ∗ α) ≡ B(� ∗ α). Hence, by observa-
tion 4 min({ω1,ω2} \ ω⊥,≤�) ∪ ω⊥ = min({ω1,ω2} \
ω⊥,≤�+μ) ∪ ω⊥, i.e., that ω1 ≤� ω2 if and only if
ω1 ≤�+μ ω2.
(⇐) Assume (DPR1+) holds and let α � μ. Condition
(DPR1+) implies that ≤� and ≤�+μ coincide in ‖μ‖, so
they coincide on ‖α‖. Therefore, min((‖α‖ \ ω⊥),≤�) ∪
ω⊥ = min((‖α‖\ω⊥),≤�+μ)∪ω⊥, that is B((�+μ)∗α) ≡
B(� ∗ α).
2) The proof is symmetric with the one above.
3) (⇒)Assume (DP3+) holds and letμ ∈ ω1 andμ �∈ ω2

and ω1 <� ω2. Let α ≡ α{ω1,ω2}. Then ‖B(� ∗ α)‖ =
min((‖α‖ \ ω⊥),≤�) ∪ ω⊥ = {ω1,ω⊥}, from which it fol-
lows that B(� ∗ α) � μ. By (DP3+) B((� + μ) ∗ α) � μ,
fromwhich it follows that ‖(B(� + μ) ∗ α)‖ = min((‖α‖\
ω⊥),≤�+μ) ∪ ω⊥ ⊆ ‖μ‖, hence ‖B((� + μ) ∗ α)‖ =
{ω1,ω⊥}, from which we can conclude that ω1 <�+μ ω2.
(⇐) Assume (DPR3+) holds and let B(� ∗ α) � μ. From
‖B(� ∗ α)‖ = min((‖α‖ \ ω⊥),≤�) ∪ ω⊥ it follows that
if ω′ ∈ ‖B(� ∗ α)‖ then α ∧ μ ∈ ω′ and for all ω′′ �= ω⊥
such that α ∧ ¬μ ∈ ω′′ it follows that ω′ <� ω′′. (DPR3+)
yields ω′ <�+μ ω′′, hence ω′′ �∈ min((‖α‖ \ ω⊥),≤�+μ),
from which it follows that B((� + μ) ∗ α) � μ.
4) (⇒) Assume (DP4+) holds and let μ ∈ ω1 and

μ �∈ ω2 and ω1 ≤� ω2. Let α ≡ α{ω1,ω2}. Then ω1 ∈
min((‖α‖ \ ω⊥),≤�) ∪ ω⊥ = ‖B(� ∗ α)‖, from which
it follows that B(� ∗ α) �� ¬μ. By (DP4+) B((� + μ) ∗
α) �� ¬μ, from which it follows that ‖B((� + μ) ∗ α)‖ =
min((‖α‖ \ ω⊥),≤�+μ) ∪ ω⊥ ∩ (‖μ‖ \ ω⊥) �= ∅, hence
ω1 ∈ ‖B((� + μ) ∗ α)‖, from which we can conclude that
ω1 ≤�+μ ω2.
(⇐) Assume (DPR4+) holds and let B(� ∗α) �� ¬μ. From
‖B(� ∗ α)‖ = min((‖α‖\ω⊥),≤�)∪ω⊥ it follows that for
some ω′ ∈ min((‖α‖ \ ω⊥),≤�) ∪ ω⊥ it holds that α ∈ ω′,
¬μ �∈ ω′ and for all ω′′ such that α ∧ ¬μ ∈ ω′′ it follows
thatω′ ≤� ω′′. (DPR4+) yieldsω′ ≤�+μ ω′′ for allω′′ such
that α ∧ ¬μ ∈ ω′′, hence ω′ ∈ min((‖α‖ \ ω⊥),≤�+μ),
from which it follows that B((� + μ) ∗ α) �� ¬μ.
5. (⇒) Assume (P+) holds and let μ ∈ ω1 and μ �∈ ω2

and ω1 ≤� ω2. Let α ≡ α{ω1,ω2}. Then ω1 ∈ min((‖α‖ \
ω⊥),≤�) ∪ ω⊥ = ‖B(� ∗ α)‖, from which it follows that
B(� ∗ α) �� ¬μ. By (P+) B((� + μ) ∗ α) � μ, from which
it follows that ‖B((� + μ) ∗ α)‖ = min((‖α‖\ω⊥),≤�+μ

) ∪ ω⊥ ⊆ ‖μ‖, hence ‖B((� + μ) ∗ α)‖ = {ω1,ω⊥}, from
which we can conclude that ω1 <�+μ ω2.
(⇐) Assume (PR+) holds and let B(� ∗ α) �� ¬μ. From
‖B(� ∗ α)‖ = min((‖α‖ \ ω⊥),≤�) ∪ ω⊥ it follows that
for some ω′ ∈ min((‖α‖ \ ω⊥),≤�) ∪ ω⊥ it holds that
α ∈ ω′, ¬μ �∈ ω′ and for all ω′′ such that α ∧ ¬μ ∈ ω′′
it follows that ω′ ≤� ω′′. (P+) yields ω′ <�+μ ω′′, hence
ω′′ �∈ min((‖α‖ \ ω⊥),≤�+μ), from which it follows that
B((� + μ) ∗ α) � μ.
Abbreviations
AGM: Alchourrón, Gärdenfors and Makinson

Acknowledgments
We want to thank the audiences of The Brazilian Logic Meeting (EBL2017), the
workshop on Belief Revision, Argumentation, Ontologies, and Norms
(BRAON17) and the Brazilian Conference on Intelligent Systems (BRACIS 2017)
for their fruitful discussions. We also thank Eduardo Barrio for his comments.

Funding
EF was partially supported by FCT MCTES and NOVA LINCS UID/
CEC/04516/2013, FCT SFRH/BSAB/127790/2016 and FAPESP 2016/13354-3.
RW was partially supported by CNPq grant PQ309605/2013-0.

Availability of data andmaterials
Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.

Authors’ contribution’s
Both authors have discussed all the topics that appear in the paper and have
equally contributed for the results presented. All authors read and approved
the final manuscript.

Authors’ information
The work described here was conceived during EF’s visit to the University of
São Paulo.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Universidade da Madeira and NOVA LINCS, Madeira, Portugal. 2Department
of Computer Science, University of São Paulo, Rua do Matõ, 1010 - Cidade
Universitária, São Paulo 05508-090, Brazil.

Received: 13 April 2018 Accepted: 14 June 2018

References
1. Alchourrón C, Gärdenfors P, Makinson D (1985) On the logic of theory

change: Partial meet contraction and revision functions. J Symb Log
50:510–530

2. Berto F (2013) Impossible worlds. In: Zalta EN (ed). The Stanford
Encyclopedia of Philosophy, winter 2013 edn. Stanford University,
Metaphysics Research Lab

3. Bloch I, Lang J (2002) Towards mathematical morpho-logics. In:
Bouchon-Meunier B, Gutiérrez-Ríos J, Magdalena L, Yager RR, Bloch I, Lang
J (eds). Technologies for Constructing Intelligent Systems 2: Tools.
Physica-Verlag HD, Heidelberg

4. Booth R, Chandler J (2016) Extending the Harper identity to iterated belief
change. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016. AAAI Press, Palo Alto, pp 987–993

5. Booth R, Meyer T (2006) Admissible and restrained revision. J Artif Intell
Res 26:127–151

6. Boutilier C (1993) Revision sequences and nested conditionals. In: Proc.
13th Int. Joint Conf. on Artificial Intelligence (IJCAI’93). AAAI Press, Palo
Alto, pp 519–525

7. Boutilier C (1996) Iterated revision and minimal change of conditional
beliefs. J Philos Log 25:263–305

8. Caridroit T, Konieczny S, Marquis P (2017) Contraction in propositional
logic. Int J Approx Reason 80:428–442. https://doi.org/10.1016/j.ijar.2016.
06.010, http://www.sciencedirect.com/science/article/pii/
S0888613X16300950

9. Chopra S, Ghose A, Meyer T, Wong KS (2008) Iterated belief change and
the recovery axiom. J Philos Log 37(5):501–520. https://doi.org/10.1007/
s10992-008-9086-2

10. Darwiche A (1997) Pearl J On the logic of iterated belief revision. Artif
Intell 89(1–2):1–29

https://doi.org/10.1016/j.ijar.2016.06.010
https://doi.org/10.1016/j.ijar.2016.06.010
http://www.sciencedirect.com/science/article/pii/S0888613X16300950
http://www.sciencedirect.com/science/article/pii/S0888613X16300950
https://doi.org/10.1007/s10992-008-9086-2
https://doi.org/10.1007/s10992-008-9086-2


Fermé and Wassermann Journal of the Brazilian Computer Society  (2018) 24:8 Page 9 of 9

11. Hansson SO (1991) Belief base dynamics. Ph.D. thesis. Uppsala University,
Uppsala

12. Hansson SO (1993) Reversing the Levi identity. J Philos Log 22:637–669
13. Hansson SO (1997) Semi-revision. J Appl Non-Classical Log 7(1-2):151–175
14. Hansson SO (1999) A survey of non-prioritized belief revision. Erkenntnis

50:413–427
15. Hansson SO (1999) A textbook of belief dynamics. Theory Change and

Database Updating. Applied Logic Series. Kluwer Academic Publishers,
Dordrecht

16. Hansson SO, Wassermann R (2002) Local change. Stud Logica 70(1):49–76
17. Jin Y, Thielscher M (2007) Iterated belief revision, revised. Artif Intell

171:1–18
18. Katsuno H, Mendelzon A (1991) Propositional knowledge base revision

and minimal change. J Artif Intell 52:263–294
19. Konieczny S, Pino Perez R (2017) On iterated contraction: syntactic

characterization, representation theorem and limitations of the levi
identity. In: Moral S, Pivert O, Sánchez D, Marín N (eds). Scalable
Uncertainty Management. Springer International Publishing, Cham,
pp 348–362

20. Kripke SA (1965) Semantical analysis of modal logic ii. non-normal modal
propositional calculi. In: Addison JW, Tarski A, Henkin L (eds). The Theory
of Models: Proceedings of the 1963 International Symposium at Berkeley,
North Holland, pp 206–20

21. Nayak A (1994) Iterated belief change based on epistemic entrenchment.
Erkenntnis 41:353–390

22. Nayak A, Pagnucco M, Peppas P (2003) Dynamic belief revision operators.
Artif Intell 146:2:193–228

23. Nayak AC, Goebel R, Orgun MA, Pham T (2006) Taking Levi identity
seriously: a plea for iterated belief contraction. In: Lang J, Lin F, Wang J
(eds). Knowledge Science, Engineering and Management, First
International Conference, KSEM, Guilin, China, Lecture Notes in Computer
Science, vol. 4092. Springer, Berlin, pp 305–317

24. (1997) Notre Dame Journal of Formal Logic: Special Issue on Impossible
Worlds; Guest Editor: Graham Priest, vol. 38(4). Duke University Press.
https://projecteuclid.org/euclid.ndjfl/1039540763

25. Peppas P (2014) A panorama of iterated revision. In: Hansson SO (ed).
David Makinson on Classical Methods for Non-Classical Problems.
Springer, Netherlands, pp 71–94

26. Priest G (1992) What is a non-normal world? Logique et Analyse
35(139/140):291–302

27. Priest G (1997) Special issue on impossible worlds; guest editor’s
introduction. Notre Dame J Form Log 38 4:481–487

28. Ramachandran R, Nayak AC, Orgun MA (2012) Three approaches to
iterated belief contraction. J Philos Log 41(1):115–142

29. Rott H (2003) Coherence and conservatism in the dynamics of belief. Part
II: Iterated belief change without dispositional coherence. J Log Comput
13:111–145

30. Testa R, Coniglio M, Ribeiro M (2015) Paraconsistent belief revision based
on a formal consistency operator. University of Campinas, Campinas.
https://www.cle.unicamp.br/eprints/index.php/CLE_e-Prints/article/
view/992

31. Zalta EN (1997) A classically-based theory of impossible worlds. Notre
Dame J. Form Log 38(4):640–660. https://doi.org/10.1305/ndjfl/
1039540774

https://projecteuclid.org/euclid.ndjfl/1039540763
https://www.cle.unicamp.br/eprints/index.php/CLE_e-Prints/article/view/992
https://www.cle.unicamp.br/eprints/index.php/CLE_e-Prints/article/view/992
https://doi.org/10.1305/ndjfl/1039540774
https://doi.org/10.1305/ndjfl/1039540774

	Abstract
	Keywords

	Introduction
	Background
	Formal preliminaries
	The AGM model for belief change
	Iterated change

	Iteration of expansion
	On the impossible world 
	Different kinds of iterated expansion functions
	Applications
	Postulates for semi-revision

	A concrete example
	Conclusion and future work
	Appendix: Proofs
	Proof of Theorem 1

	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contribution's
	Authors' information
	Competing interests
	Publisher's Note
	Author details
	References

