
Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 1

Design Patterns as

Aspects: A Quantitative
Assessment

Cláudio Sant’Anna

Software Engineering Laboratory

Computer Science Department

PUC-Rio

claudios@inf.puc-rio.br

Alessandro Garcia

Software Engineering Laboratory

Computer Science Department

PUC-Rio

afgarcia@inf.puc-rio.br

Uirá Kulesza

Software Engineering Laboratory

Computer Science Department

PUC-Rio

uira@inf.puc-rio.br

Carlos Lucena

Software Engineering Laboratory

Computer Science Department

PUC-Rio

lucena@inf.puc-rio.br

Arndt von Staa

Software Engineering Laboratory

Computer Science Department

PUC-Rio

arndt@inf.puc-rio.br

Abstract Design patterns offer flexible solutions to common problems in software development. Recent

studies have shown that several design patterns involve crosscutting concerns. Unfortunately,
object-oriented (OO) abstractions are often not able to modularize those crosscutting concerns,
which in turn decrease the system reusability and maintainability. Hence, it is important verify-
ing whether aspect-oriented approaches support improved modularization of crosscutting con-
cerns relative to design patterns. Ideally, quantitative studies should be performed to compare
object-oriented and aspect-oriented implementations of classical patterns with respect to impor-
tant software engineering attributes, such as coupling and cohesion. This paper presents a
quantitative study that compares aspect-based and OO solutions for a representative set of de-
sign patterns. We have used stringent software engineering attributes as the assessment criteria.
We have found that most aspect-oriented solutions improve separation of pattern-related con-
cerns, although some aspect-oriented implementations of specific patterns resulted in higher
coupling and more lines of code.

Keywords: Design patterns, aspect-oriented programming, metrics

1 Introduction

Since the introduction of the first software pattern
catalog containing the 23 Gang-of-Four (GoF) patterns
[6], design patterns have quickly been recognized to be
important and useful in real software development. A
design pattern describes a proven solution to a design
problem with the goal of assuring reusable and maintain-
able solutions. Patterns assign roles to their participants,
which define the functionality of the participants in the
pattern context. However, a number of design patterns
involve crosscutting concerns in the relationship between

the pattern roles and participant classes in each instance
of the pattern [10]. The pattern roles often crosscut sev-
eral classes in a software system. Moreover, recent stud-
ies [8, 9, 10] have shown that object-oriented abstractions
are not able to modularize these pattern-specific concerns
and tend to lead to programs with poor modularity. In this
context, it is important to systematically verify whether
emerging development paradigms support improved
modularization of the crosscutting concerns relative to
the patterns.

Aspect-oriented software development (AOSD) [14,
21] is a promising paradigm to promote improved separa-

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 2

tion of concerns, leading to the production of software
systems that are easier to maintain and reuse. AOSD is
centered on the aspect notion as an abstraction aimed to
modularize crosscutting concerns. Hence, aspect-oriented
approaches are candidates to address the crosscutting
property of design patterns. However, up to now there is
only consensus that classical and obvious crosscutting
concerns should be modularized as aspects, such as log-
ging [2] and exception handling [16].

To the best of our knowledge, Hannemann and
Kiczales [10] have developed the only systematic study
that investigates the use of aspects to implement classical
design patterns. They performed a preliminary study in
which they develop and compare Java [12] and AspectJ
[2] implementations of the GoF patterns. Their findings
have shown that AspectJ implementations improve the
modularity of most patterns. However, these improve-
ments were based on some attributes that are not well
known in software engineering, such as composability
and (un)pluggability. Moreover, this study was based
only on a qualitative assessment and empirical data is
missing. To solve this problem, this previous study
should be replicated and supplemented by quantitative
case studies in order to improve our knowledge body
about the use of aspects for addressing the crosscutting
property of design patterns.

This paper complements Hannemann and Kiczales’
work [10] by performing quantitative assessments of Java
and AspectJ implementations for a representative set of
the GoF patterns. Our study was based on well-known
software engineering attributes such as separation of
concerns, coupling, cohesion and size. We have found
that most aspect-oriented solutions improved separation
of pattern-related concerns, although some aspect-
oriented implementations of specific patterns resulted in
higher coupling, more complex operations and more lines
of code than object-oriented implementations.

The remainder of this paper is organized as follows.
Section 2 introduces basic concepts in aspect-oriented
programming. Section 3 presents our study setting, while
giving a brief description of Hannemann and Kiczales’
study. Section 4 presents the study results with respect to
separation of concerns, and Section 5 presents the study
results in terms of coupling, cohesion and size attributes.
These results are interpreted and discussed in Section 6.
Section 7 introduces some related work. Section 8 in-
cludes some concluding remarks and directions for future
work.

2 Aspect-Oriented Software Devel-
opment

Separation of concerns is a well-established principle
in software engineering. A concern is some part of the
problem that we want to treat as a single conceptual unit
[21]. Concerns are modularized throughout software
development using different abstractions provided by
languages, methods and tools. However, these abstrac-
tions may not be sufficient for separating some special
concerns found in most complex systems. These concerns
have been called crosscutting concerns since they natu-
rally cut across the modularity of other concerns. Aspect-
oriented software development (AOSD) [14, 21] has been
proposed as a technique for improving separation of
concerns in the construction of OO software and support-
ing improved reusability and maintainability. AOSD
supports the modularization of crosscutting concerns by
providing the aspect abstraction that makes it possible to
separate and compose them to produce the overall sys-
tem.

AspectJ [2] is an aspect-oriented extension to the Java
programming language. Aspect is a modular unit of
crosscutting implementation in AspectJ. Each aspect
encapsulates functionality that crosscuts classes in a pro-
gram. An aspect is defined by an aspect declaration,
which has a similar form of class declaration in Java.
Similar to a class, an aspect can be instantiated and can
contain attributes and methods, and it can be specialized
in subaspects. An aspect is then combined with the
classes it crosscuts according to specifications given
within the aspect. Moreover, an aspect can introduce
methods, attributes, and interface implementation decla-
rations into types by using the inter-type declaration
construct.

The essential mechanism provided for composing an
aspect with other classes is called a join point. A join
point is a well-defined point in the execution of a pro-
gram, such as a call to a method, an access to an attribute,
an object initialization, exception handler, etc. Sets of
join points may be represented by pointcuts. AspectJ
provides various pointcut designators that may be com-
bined through logical operators to build up complete
descriptions of pointcuts of interest. An aspect can spec-
ify advices that are used to define some code that should
be executed when a pointcut is reached. An advice is a
method-like mechanism that consists of a piece of code to
be executed before, after, or around a pointcut. An As-
pectJ program can be divided into two parts: a base code
part which includes classes, interfaces, and other lan-
guage constructs for implementing the basic functionality
of the program, and an aspect code part which includes
aspects for modeling crosscutting concerns in the pro-

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 3

gram. For further information about AspectJ, one can
refer to [2].

3 Study Setting

This section describes the configuration of our em-
pirical study. Our study supplements the Hannemann and
Kiczales work that is presented in Section 3.1. Section
3.2 uses the Observer pattern to illustrate the crosscutting
property of some design patterns. Section 3.3 describes
the design patterns selected for our study as well as our
assessment procedures. Section 3.4 introduces the metrics
used in the assessment process.

3.1 Hannemann & Kiczales’ Study

 Several design patterns exhibit crosscutting concerns
[10]. In this context, Hannemann and Kiczales have un-
dertaken a study in which they have developed and com-
pared Java [12] and AspectJ [2] implementations of the
23 GoF design patterns [10]. They claim that program-
ming languages affect pattern implementation. Hence it is
natural to explore the effect of aspect-oriented program-
ming techniques on the implementation of the GoF pat-
terns. For each of the 23 GoF patterns they developed a
representative example that makes use of the pattern, and
implemented the example in both Java and AspectJ.

Design patterns assign roles to their participants; for
example, the “Subject” and “Observer” roles are defined
in the Observer pattern. A number of GoF patterns in-
volve crosscutting structures in the relationship between
roles and classes in each instance of the pattern [10]. For
instance, in the Observer pattern, an operation that
changes any “Subject” must trigger notifications to the
corresponding “Observers”; in other words the act of
notification crosscuts one or more operation in each
“Subject” in the pattern.

In Hannemann and Kiczales’ study, AspectJ imple-
mentations of the GoF patterns were generated to modu-
larize the pattern roles. They have demonstrated modular-
ity improvements in 17 of the 23 cases. The degree of
improvement has varied. They found out that patterns
whose crosscutting structures involve roles and partici-
pant classes yield the largest improvement in the AspectJ
implementation. These improvements were manifested in
terms of four modularity properties: locality, reusability,
composition transparency and (un)pluggability. The next
subsection discusses these improvements as well as the
crosscutting pattern structures in terms of the Observer
pattern.

3.2. Example: The Observer Pattern

The Observer pattern [6] is one of the most popular
design patterns. Object-oriented implementations of the
Observer pattern usually add an attribute to all potential
Subjects that stores a list of Observers interested in that
particular Subject. When a Subject wants to report a state
change to its Observers, it calls its own notify method,
which in turn calls an update method on all Observers
in the list. Figure 1 shows a concrete example of the
Observer pattern in the context of a simple figure han-
dling package. In such a program the Observer pattern
would be used to update the screen whenever a figure
element is changed. The shadowed methods contain code
necessary to implement this instance of the Observer
pattern. This shows that code for implementing this pat-
tern is spread across the classes. All participants (i.e.
Point and Line) have to know about their role in the
pattern and consequently have pattern code within them.

In this context, Hannemann and Kiczales have devel-
oped an AspectJ solution in which the code for imple-
menting the Observer pattern is textually localized in two
aspects: an abstract aspect, and one concrete extension of
this aspect for each instance of the pattern. The abstract
ObserverProtocol aspect implemented by Hanne-
mann and Kiczales is shown in Figure 2. The roles are
realized as protected inner interfaces named Subject and
Observer (line 3-4). Concrete extensions of the Ob-
serverProtocol aspect assign the roles to particular
classes. Implementation of the mapping from Subjects to
Observers is realized using a weak hash map of linked
lists to store the Observers for each Subject (line 6).
Changes to the Subject-Observer mapping can be realized
via the public addObserver and removeObserver
methods (line 20-25) that concrete subaspects inherit. An
abstract pointcut named subjectChange (line 27) and
an abstract update method updateObserver (line 29)
are defined. They are to be reified by instance-specific

Figure 1 : A simple graphical element that uses the Observer pattern in
Java.

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 4

subaspects. Finally, the abstract aspect implements the
update logic in terms of the pointcut subjectChange
and the method updateObserver. This logic is con-
tained in the after advice (line 31-36).

Each concrete subaspect of ObserverProtocol
defines one particular kind of observing relationship, in
other words a single pattern instance. Figure 3 shows an
instance of the Observer pattern involving the classes
Point, Line and Screen implemented by the aspect
ColorObserver. This subaspect defines that the
classes Point and Line play the role of Subject, and
Screen plays the role of Observer. This is done using
the declare parents inter-type declaration construct,
which adds interfaces to the classes, to assign the roles
defined in the abstract aspect (line 3-5). The subaspect
also concretizes the subjectChange pointcut to define
the operations on the subject that require updating the
Observers (line 7-10). Furthermore, it defines how to
update the observers by concretizing the updateOb-
server method (line 12-14). As we can see, in the As-
pectJ version of the Observer pattern, all code pertaining
to the relationship between Observers and Subjects is
moved into aspects. In this way, code for implementing
the pattern is textually localized in aspects, instead of
being spread across the participant classes. Moreover, the
abstract aspect code can be reused by all pattern in-
stances.

01 public abstract aspect ObserverProtocol {

02

03 protected interface Subject { }

04 protected interface Observer { }

05

06 private WeakHashMap perSubjectObservers;

07

08 protected List getObservers(Subject s) {

09 if (perSubjectObservers == null) {

10 perSubjectObservers = new WeakHashMap();

11 }

12 List observers =

 (List)perSubjectObservers.get(s);

13 if (observers == null) {

14 observers = new LinkedList();

15 perSubjectObservers.put(s, observers);

16 }

17 return observers;

18 }

19

20 public void addObserver(Subject s,

 Observer o) {

21 getObservers(s).add(o);

22 }

23 public void removeObserver(Subject s,

 Observer o) {

24 getObservers(s).remove(o);

25 }

26

27 abstract protected pointcut

 subjectChange(Subject s);

28

29 abstract protected void

 updateObserver(Subject s, Observer o);

30

31 after(Subject s): subjectChange(s) {

32 Iterator iter = getObservers(s).iterator();

33 while (iter.hasNext()) {

34 updateObserver(s,((Observer)iter.next()));

35 }

36 }

37 }

Figure 2: The ObserverProtocol Aspect

01 public aspect ColorObserver

 extends ObserverProtocol {

02

03 declare parents: Point implements Subject;

04 declare parents: Line implements Subject;

05 declare parents: Screen implements Observer;

06

07 protected pointcut subjectChange(Subject s):

08 (call(void Point.setColor(Color)) ||

09 call(void Line.setColor(Color))) &&

10 target(s);

11

12 protected void updateObserver(Subject s,

 Observer o) {

13 ((Screen)o).display("Color change.");

14 }

15 }

Figure 3: An Observer instance

3.3. The Assessed Patterns and Introduced
Changes

Hannemann and Kiczales grouped the 23 GoF pat-
terns by common features, either of the pattern structures
or their AspectJ implementations. They have identified
six groups based on their structural similarities. The

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 5

groups are: (1) Observer, Mediator, Chain of Responsi-
bility, Composite and Command, (2) Singleton, Proto-
type, Memento, Iterator and Flyweight, (3) Adapter,
Decorator, Strategy, Visitor and Proxy, (4) Abstract Fac-
tory, Factory Method, Template Method, Builder, Bridge,
(5) State and Interpreter, and (6) Façade.

In our study, we have decided to assess the implemen-
tation of six of the GoF patterns in order to have repre-
sentative examples of each group. However, we have
excluded the Façade pattern, since there is no difference
between Java and AspectJ implementations of this pat-
tern. Thus, we have chosen the following patterns: Ob-
server, Mediator, Prototype, Strategy, State and Abstract
Factory.

We have applied a metrics suite [18, 19] (Section 3.4)
to both Java and AspectJ code of these six design pat-
terns. First, we applied the metrics in Hannemann and
Kiczales original code. Afterwards, we changed their
implementation to add new participant classes to play

pattern roles. For instance, in the Observer pattern im-
plementation, four classes playing the “Subject” role
were added, as the Point class in Figure 1 (Section 3.2);
furthermore, four classes playing the “Observer” role
were added, as the Screen class in Figure 1 (Section
3.2). These changes were introduced because Hannemann
and Kiczales’ implementation encompasses few classes
per role (in most cases only one). Hence we have decided
to add more participant classes in order to investigate the
pattern crosscutting structure. Finally, we have applied
the chosen metrics to the changed code. We analyzed the
results after the changes, comparing with the results gath-
ered from the original code (i.e. before the changes).
Table 1 presents the roles of each studied pattern and the
participant classes introduced to each pattern implemen-
tation example.

3.4. The Metrics

Selected Patterns Pattern Roles Introduced Participant Classes

Observer Subject and Observer 4 Subject classes and 4 Observer classes

Mediator Colleague and Mediator 4 Colleague classes

Prototype Prototype 4 Prototype classes

Strategy Context and Strategy 4 Context classes

State Context and State 2 State classes

Abstract Factory Product and Factory 2 Factory classes

Table 1: The Selected Design Patterns and Respective Changes

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 6

In our study, a suite of metrics for separation of con-
cerns, coupling, cohesion and size [18, 19] was selected
to evaluate Hannemann and Kiczales’ pattern implemen-
tations. These metrics have already been used in a sig-
nificant number of other studies [7, 8]. Some of them
have been automated in the context of a query-based tool
for aspect understanding measurement and analysis [1].
This metric suite was defined based on the reuse and
refinement of some classical and object-oriented metrics
[4, 5]. Some of the object-oriented metrics [4] were tai-
lored to be also applicable to aspect-oriented software.
The original definition of each metric was extended to be
applied in a paradigm-independent way, supporting the
generation of comparable results.

The metrics suite also encompasses new metrics for
measuring separation of concerns. The separation of
concerns metrics measure the degree to which a single
concern in the system maps to the design components
(classes and aspects), operations (methods and advices),
and lines of code. Table 2 presents a brief definition of
each metric, and associates them with the attributes
measured by each one. Table 2 also presents the sources
for the metrics which the aspect-oriented metrics are
based on. Refer to [7, 18, 19] for further details about the

metrics.

In order to better understand the separation of con-
cerns metrics, consider the example of the Observer pat-
tern, shown in Figure 1 (Section 3.2). In that example,
there is code related to the “Subject” role in the Sub-
ject interface and in the shadowed methods of Point
class and Line class, i.e., this concern is implemented by
one interface and two classes. Therefore, the value of the
Concern Diffusion over Components metric (CDC) for
this concern is three. Similarly, the value of the Concern
Diffusion over Operations metric (CDO) for the “Sub-
ject” role is 13, since this concern is implemented by the
three methods of the Subject interface, the five shad-
owed methods of the Point class, and the five shad-
owed methods of the Line class.

4 Results: Separation of Concerns

This section and Section 5 present the results of the
measurement process. The data have been collected based
on the set of defined metrics (Section 3.4). The goal is to
describe the results through the application of the metrics

 Metrics Definition Based on

Concern Diffusion over

Components (CDC)

Counts the number of classes and aspects whose

main purpose is to contribute to the implemen-

tation of a concern and the number of other

classes and aspects that access them.

-

Concern Diffusion over

Operations (CDO)

Counts the number of methods and advices whose

main purpose is to contribute to the implemen-

tation of a concern and the number of other

methods and advices that access them.

-

S
e
p
a
r
a
t
i
o
n

o
f

C
o
n
c
e
r
n
s

Concern Diffusions over LOC

(CDLOC)

Counts the number of transition points for each

concern through the lines of code. Transition

points are points in the code where there is

“concern switch”.

-

Coupling Between Components

(CBC)

Counts the number of other classes and aspects

to which a class or an aspect is coupled.
Chidamber[4]

C
o
u
p
l
i
n
g

Depth of Inheritance Tree

(DIT)

Counts how far down in the inheritance hierar-

chy a class or aspect is declared.
Chidamber[4]

C
o
h
e
s
i
o
n

Lack of Cohesion in

Operations (LCOO)

Measures the lack of cohesion of a class or an

aspect in terms of the amount of method and

advice pairs that do not access the same in-

stance variable.

Chidamber[4]

Lines of Code (LOC) Counts the lines of code. Fenton [5]

Number of Attributes (NOA)
Counts the number of attributes of each class

or aspect.
Fenton [5]

S
i
z
e

Weighted Operations per

Component (WOC)

Counts the number of methods and advices of

each class or aspect and the number of its pa-

rameters.

Chidamber[4]

Table 2: The Metrics Suite

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 7

before and after the selected changes (Section 3.3). The
data was partially gathered by the CASE tool Together
6.0. It supports some metrics: LOC, NOA, WOC
(WMPC2 in Together), CBC (CBO in Together), LCOO
(LOCOM1 in Together) and DIT (DOIH in Together).
Due to space limitation, this paper focuses on the descrip-
tion of the more relevant results. The complete descrip-
tion of the data gathered is reported elsewhere [18].

The analysis is broken into two parts. This section fo-
cuses on the analysis of to what extent the aspect-oriented
(AO) and object-oriented (OO) solutions provide support
for the separation of pattern-related concerns. Section 5
presents the results regarding to coupling, cohesion, and
size. The discussion about the interplay among all the
results is concentrated in Section 6. Graphics are used to
represent the data gathered in the measurement process.
The resulting graphics present the gathered data before
and after the changes applied to the pattern implementa-
tion (Section 3.3). The graphic Y-axis presents the abso-
lute values gathered by the metrics. Each pair of bars is
attached to a percentage value, which represents the dif-
ference between the AO and OO results. A positive per-
centage means that the AO implementation was superior,
while a negative percentage means that the AO imple-
mentation was inferior. These graphics support an analy-
sis of how the introduction of new classes and aspects
affect both solutions with respect to the selected metrics.
The results shown in the graphics were gathered accord-
ing to the pattern point of view; that is, they represent the
tally of metric values associated with all the classes and
aspects for each pattern implementation.

For separation of concerns, we have verified the sepa-
ration of each role of the patterns on the basis of the three
separation of concerns metrics (Section 3.4). For exam-
ple, the isolation of the roles “Mediator” and “Colleague”
was analyzed in the implementations of the Mediator
pattern, while the modularization of the roles “Context”
and “State” was investigated in the implementations of
the State pattern. Likewise Hannemann and Kiczales, we
treated each pattern role as a concern, because the roles
are the primary sources of crosscutting structures. The
pattern roles crosscut participant classes. The investigated
patterns are classified into two groups: Group 1 and

Group 2. Group 1 represents the patterns whose aspect-
oriented solution provided better results (Section 4.1).
Group 2 represents the patterns whose either the use of
aspects did not impact the results or the OO solutions
have shown as superior (Section 4.2).

4.1. Group 1: Observer, Mediator, Strategy
and Prototype

The first group includes the Observer, Mediator,
Strategy and Prototype patterns. All the aspect-oriented

implementations of these patterns exhibited improved
separation of concerns. Figures 4 and 5 depict the overall
results of the AO and OO solutions for all the separation
of concerns metrics. Note that the graphics present the
measures before and after the execution of the changes
(Section 3.3). Figure 4 presents the CDC results, i.e. to
what extent the pattern roles are isolated through the
system components in both solutions. Figure 5a presents
the CDO results – the separation degree of the pattern
roles through the system operations – and Figure 5b illus-
trates the CDLOC results – the tally of concern switches
(transition points) through the lines of code. In fact, all
these graphics show significant differences in favor of the
aspect-based solution. The improvement comes primarily
from isolating the roles of the patterns in the aspects.

Figure 4: Concern Diffusion over Components (Group 1)

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 8

In general, the use of aspects led to inferior results be-
fore the application of the changes, but led to substan-
tially superior outcomes after the implemented changes.
After a careful analysis of Figures 4 and 5, we come to
the conclusion that after the changes most aspect-oriented
implementations isolated the roles 30% more than the
object-oriented implementations. There are some cases
where the difference is even bigger - the superiority of
aspects exceeds 60%, an interesting fact given that in
these cases the values were equivalent in both object-
oriented and aspect-oriented solutions before the imple-
mentation of the changes. For the “Subject” and “Col-
league” roles (Figure 5), the aspect-oriented solutions are
even better before of incorporation of new components.
This problem happens in the OO solution because several
operation implementations are intermingled with role-
specific code. For example, the code associated with the
event handling mechanism (Observer pattern) is amalga-
mated with the basic functionality of the application
classes. It increases the number of transition points and
the number of components and operations that deal with
pattern-specific concerns.

After the changes, the majority of the pattern roles re-
quired more components in the definition of the OO solu-
tion than in the AO solution (Figure 4). For example, the
definition of the “Colleague” role required 7 classes,
while only 3 aspects were able to encapsulate this con-
cern. It is equivalent to 57% in favor of the aspect-
oriented design for the Mediator pattern. In fact, most
roles were better modularized in the AO solution: Ob-
server (2 against 4), Subject (5 against 8), Context (3
against 6), and Colleague (3 against 7). The results were
similar to the separation of concerns over operations
(Figure 5a) and lines of code (Figure 5b).

An additional interesting observation is that the abso-
lute number of components (CDC), operations (CDO)
and transition points (CDLOC) in the aspect-oriented
solutions did not vary after the modifications, except for
the Prototype role. For example, the Context role required
three components before the changes and the same three
components after the changes (Figure 4). The same be-
havior is observed in the measures of operations and
transition points (Figure 5). For the Context role, 3 opera-
tions and 8 transition points were used both before and
after the modifications. This reflects the suitability of
aspects for the complete separation of the roles associated
with the four patterns in this category. When new classes
are introduced, they do not need to implement pattern-
related code. The problem with the Prototype role is that
the declaration of the implementation of the Cloneable
interface (that is a pattern-specific concern) is amalga-
mated to the implementation of business classes in the
AO solution. However, this problem is not implicit to the
use of aspects, but the specific implementation of Han-
nemmann and Kiczales [10] (Section 3.1).

The results also show that the overall performance of
the aspect-oriented solutions gradually improves as new
components are introduced into the system. It means that
as more components are included into the object-oriented
system, more role-related code is replicated through the
system components. Thus a gradual improvement takes
place in the aspect-oriented solutions of the patterns. The
series of small introduced changes (Section 3.3) affects
negatively the performance of the OO solution and posi-
tively the AO solution. The changes lead to the degrada-
tion of the OO modularization of the pattern-related con-
cerns. This observation provides evidence of the effec-
tiveness of aspect-oriented abstractions for segregating

 (a) Concern Diffusion over Operations (b) Concern Diffusion over Lines of Code

Figure 5: Separation of Concerns over Operations and Lines of Code (Group 1)

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 9

crosscutting structures.

4.2. Group 2: State and Abstract Factory

This group includes the State and Abstract Factory
patterns. Figures 6 and 7 depict the overall results of
separation of concerns in the AO and OO solutions for
the patterns in this group. Figure 6 presents the CDC
results, Figure 7a presents the CDO results, and Figure 7b
illustrates the CDLOC results. Overall, no significant
difference was detected in favor of a specific solution; the
results were mostly similar for the aspect-oriented and
OO implementations of these patterns. This observation
is mainly supported by CDO (Figure 7a) and CDLOC
(Figure 7b). As those roles are already nicely realized in
OO, these patterns could not be given more modularized
aspect-oriented implementations. Thus the use of aspects
does not bring apparent gains to these pattern implemen-
tations regarding to separation of concerns.

The outcomes of this group were highly different
from the ones obtained in group 1 (Section 4.1) because
the OO implementation of the patterns here do not imply
in a significant crosscutting structure. The role-related
code in these patterns affects a very small number of
methods and classes.

There were some differences detected in the evalua-
tion of the solutions, such as in the State pattern. The
aspect-oriented design of the State role presented inferior
results in the CDC measures; it required 20% more com-
ponents than the OO solution before the changes, and
14% more components after the changes (Figure 6). The
reason for this difference is that the AO solution has an
additional aspect for modularizing the transition of states.
On the other hand, the OO design of the Context role
involved 33% more components than the AO design
before as well as after the changes. The object-oriented
solution has an interface, which defines a method to sup-

port the state transition; the aspect-oriented implementa-
tion does not require this interface.

The sole difference observed in the Abstract Factory
pattern was related to the number of components used to
modularize the Factory role. This role was more localized
in the OO design, although the difference consists of only
one component when compared with the AO design (Fig-
ure 6). The aspect-based design has one additional aspect
that provides a default implementation of the factory
methods defined in the AbstractFactory interface, which
is attached to this interface on the basis of inter-type
declarations [10].

5 Results: Coupling, Cohesion and
Size

This section presents the coupling, cohesion and size
measures. We used graphics to present the data obtained
before and after the systematic changes (Section 3.3),

Figure 6: Concern Diffusion over Components (Group 2)

 (a) Concern Diffusion over Operations (b) Concern Diffusion over Lines of Code

Figure 7: Separation of Concerns over Operations and Lines of Code (Group 2)

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 10

similarly to the previous section. The results represent the
tally of metric values associated with all the classes and
aspects for each pattern implementation. The patterns
were classified into 4 groups according to the similarity
in their measures.

5.1. Group 1: Observer and Mediator

For the Observer and Mediator patterns, the aspect-
oriented design and implementation manifest several
closely related benefits. As the changes were accom-
plished, the aspect-oriented solution exhibited superior
results with respect to operation complexity (WOC), lines
of code (LOC), number of attributes (NOA), cohesion
(LCOO) and inter-component coupling (CBC). The dif-
ferences were mostly more than 10% in favor of the as-
pect-oriented solution for both design patterns.

Figure 8 shows the graphic with results for the Ob-
server pattern. In the aspect-oriented implementation of
this pattern, the major improvements were detected in the
LOC, LCOO and NOA measures. The use of aspects led
to a 27% reduction of LOC in relation to the OO code.
Thus aspects solve the problem of code replication (Sec-
tion 3.2) related to the implementations of the method
notifyObservers(). The cohesion in the AO im-
plementation was 62% higher than the OO implementa-

tion because the latter incorporates a number of classes
that play the Subject and Observer roles and, as a conse-
quence, implement role-specific methods that in turn do
not access the attributes of the classes. In the aspect-
oriented design, these methods are localized in the as-
pects that implement the roles, increasing the cohesion of
both classes and aspects. The tally of attributes in the OO
implementation was respectively 17% and 19% higher
than in the AO code before and after the introduction of
new components into the implementations. In the OO
solution, the “subject” classes need attributes to hold
references to their “observer” classes; these attributes are
not required in the aspect-oriented design.

5.2. Group 2: Prototype and Strategy

The measures gathered from implementations of the
Prototype and Strategy patterns were mostly similar. In
general, the OO implementation provided better results,
mainly with respect to coupling between components
(CBC), complexity of operations (WOC), and lines of
code (LOC). Figure 9 shows the results for the Strategy
pattern. Note that inheritance was the only factor that was
not affected by the use of aspects. In the OO solution,
class inheritance is used to implement the variability of
the strategies [6]; in the AO solution, aspect inheritance is
used to define a specific strategy protocol [10]. As a

Figure 8: The Observer Pattern: Coupling, Cohesion and Size

Figure 9: The Strategy Pattern: Coupling, Cohesion and Size

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 11

result, the maximum DIT was two for both solutions.

The system coupling was substantially higher in the
aspect-oriented solution. For example, the difference
between the solutions was 4 units in favor of the OO
design of the Strategy pattern. As new components were
added to both designs, the difference remained constant
(Figure 9). It happens because the aspects, which imple-
ment the pattern roles, are coupled to the business

classes. The coupling of the business classes introduced
into the AO implementation is zero since they are not
aware of the presence of aspects. However, the coupling
of the aspect, which implements the strategy protocol,
increases linearly. Table 3 illustrates this problem: the
coupling of the SortingStrategy aspect is 7, while
the coupling of the SortingStrategy class is 0. This
table also shows that LOC was higher in the aspect-
oriented solution. The aspects require more lines of code
as the changes are carried out. For example, the Sort-
ingStrategy aspect has 17 LOC, while the Sort-
ingStrategy class has 4 LOC. Cohesion is not a valid

metric for both patterns because most classes and aspects
do not have internal attributes. The differences in the
NOA measures are not significant (Figure 9). In both
patterns, WOC measures decreases as the changes are
implemented. However, the OO implementation remains
superior.

5.3. Group 3: State

The aspect-oriented implementation of the State pat-
tern was superior in three measures: coupling, cohesion
and complexity of operations (Figure 10). On the other
hand, the OO implementation provided better results in
two measures: number of attributes and lines of code. The
coupling in the OO solution is higher than in the AO
solution because the classes representing the states are
highly coupled to each other; this problem is overcame in
the aspect-oriented solution because the aspects modular-
ize the state transitions (Figure 11), minimizing the sys-
tem-level coupling. Figure 11 shows that the coupling in
the OO solution is seven because each “state” class needs
to have references to the other “state” classes.

The OO solution produced more complex operations
(WOC measures) because all the methods on the “state”
classes have an additional parameter to receive the “con-
text” object in order to implement the state transition; it is
not required in the aspect-oriented design because a
unique aspect is responsible for managing the transitions
between states.

From the NOA metric point of view, the OO imple-
mentation was superior because the aspect-oriented im-
plementation has additional attributes in the aspects to
hold references to the “state” elements. This difference
increases as new “state” elements are added to the system
(Figure 11). The OO implementation provided fewer
LOCs in spite of the “state” classes have fewer lines of
code. However, the aspect, which manages the state tran-
sitions, has a high number of LOCs since: (i) it holds
references to all the “state” classes, and (ii) one additional
advice associated with methods of “state” classes.

Table 3: The Strategy Pattern: Measures Per Component

Figure 10: The State Pattern: Coupling, Cohesion and Size

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 12

5.4. Group 4: Abstract Factory

No significant difference was detected in the AO and
OO implementations of the Abstract Factory pattern. As
illustrated in Figure 12, the measures were similar with
respect to cohesion (LCOO), inheritance (DIT), number
of attributes (NOA), and complexity of operations
(WOC). The differences detected in LOC and coupling
measures are not significant. The reason for such results
is that the OO and AO designs are very similar. The dif-
ference relies on an aspect that introduces default behav-
ior to the methods of the interface that plays the Abstract
Factory role [10].

6 Discussion

Experimental studies [3] are the most effective way to
supply empirical evidence that may improve our under-
standing about software engineering phenomena. Al-
though quantitative studies have some disadvantages
[15], they are very useful because they boil a complex
situation down to simple numbers that are easier to grasp
and discuss [15]. They supplement qualitative studies
with empirical data [15]. Quantitative studies investigat-

ing the implementation of design patterns as aspects are
rare [15]. Most of the claims are supported by experi-
ences reports of practitioners, but there is a lack of quan-
titative research concerning the realization of the claimed
benefits. This section provides a more general analysis
(Section 6.1) of the previously observed results in Sec-
tions 4 and 5, and discussions about the constraints on the
validity of our empirical evaluation (Section 6.2).

6.1. General Analysis

Separation of Concerns. As presented in Section 4.1, the
AspectJ implementations of the Observer, Mediator,
Prototype and Strategy patterns have shown better results
in terms of the metrics of separation of concerns. Indeed,
these results have confirmed that their AspectJ imple-
mentations manifest modularity improvements, which in
turn was also observed by Hannemann and Kiczales in
terms of locality, transparency composability and
(un)pluggability. In addition, the results about the Ab-
stract Factory pattern (Section 4.2) support Hannemann
and Kiczales’ claims that this pattern did not benefit from
AspectJ implementation. However, AspectJ implementa-
tion of the State pattern has not shown relevant separation
of concern improvements, which contradicts some Han-
nemann and Kiczales’ claims about this pattern.

Figure 11: Coupling in the State Pattern: OO vs. AO

Figure 12: The Abstract Factory Pattern: Coupling, Cohesion and Size

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 13

Inseparable Concerns. Sometimes the pattern is ex-
pressed separately as an aspect, but it remains non-trivial
to specify how this separate aspect should be recombined
into a simple manner. A lot of effort is required to com-
pose the participant classes and the aspects that modular-
ize the pattern roles. For example, the aspect-oriented
implementation of the Strategy pattern provided better
separation of the pattern-related concerns (Section 4.1).
However, although the aspect-oriented solution isolates
the pattern roles in the aspects, it resulted in higher com-
plexity in terms of coupling (CBC), operation complexity
(WOC), and lines of code (LOC), as described in Section
5.2. In this context, there are some cases where the sepa-
ration of the pattern-related concerns lead to more com-
plex solutions.

Reducing Coupling. Based on the interplay of the results
in Section 4 and 5, we can conclude that the use of as-
pects provided better results for the patterns with high
interaction between the roles in their original definition.
The Mediator, Observer, State patterns are examples of
this kind of patterns. The Mediator pattern, for instance,
exhibits high inter-role interaction: each “Colleague”
collaborates with the “Mediator”, which in turn collabo-
rates with all the “Colleagues”. The use of aspects was
useful to reduce the coupling between the participants in
the pattern, since the aspect code modularizes the col-
laboration protocol between the pattern roles. Figure 11
illustrates how the aspect was used to reduce the coupling
of the OO solution of the State pattern. In fact, the use of
aspects did not succeed in the patterns whose roles are
not highly interactive. This is the case for the Abstract
Factory, Prototype and Strategy patterns (Sections 5.2
and 5.4).

Multi-Dimensional Analysis. Hannemann and Kiczales
[10] have centered their analysis only on separation of
concerns, and how the achieved separation helps to im-
prove high-level qualities of the pattern and the applica-
tion, such as (un)pluggability and composability. Lopes
[17] has also carried out a case study that rests only on
separation of concerns as assessment criteria. However,
based on the discussion above, we found that the analysis
of other software dimensions or attributes, such as cou-
pling and internal complexity of operations, are ex-
tremely important to compare aspect-oriented and object-
oriented designs. In fact, the interaction between the
aspects and the classes is sometimes so intense that the
separation of aspects in the source code seems to be a
more complex solution in terms of other software attrib-
utes.

Refactoring Aspect-Oriented Solutions. Based on the
measurements, we have found that some problems in the
aspect-oriented solutions are not related to the aspect
paradigm itself, but to some design or implementation
decisions taken in the Hannemmann and Kiczales imple-

mentation (Section 3.1). For example, the problem related
to the aspect-oriented solution for the Prototype pattern
occurred because the developers have left the declaration
of the Cloneable interface in the description of the classes
(Section 4.1). However, this solution can be refactored in
order to improve the separation of concerns, overcoming
the problem detected in Section 4.1. In this sense, we can
conclude that quantitative assessments based on well-
known software attributes, as performed in this study, are
also useful to capture opportunities for refactoring in
aspect-oriented software.

6.2. Study Constraints

Concerning our experimental assessment, there is one
general type of criticism that could be applied to the used
software metrics (Section 3.4). This refers to theoretical
arguments leveled at the use of conventional size metrics
(e.g. LOC), as they are applied to traditional (non-AO
software) development. However, in spite of the well-
known limitations of these metrics we have learned that
their application cannot be analyzed in isolation and they
have shown themselves to be extremely useful when
analyzed in conjunction with the other used metrics. In
addition, some researchers (such as Henderson-Sellers
[11]) have criticized the cohesion metric as being without
solid theoretical bases and lacking empirical validation.
However, we understand this issue as a general research
problem in terms of cohesion metrics. In the future, we
intend to use another emerging cohesion metrics based on
program dynamics.

The limited size and complexity of the examples used
in the implementations may restrict the extrapolation of
our results. However, while the results may not be di-
rectly generalized to professional developers and real-
world systems, these representative examples allow us to
make useful initial assessments of whether the use of
aspects for the modularization of classical design patterns
would be worth studying further. In spite of its limita-
tions, the study constitutes an important initial empirical
work and is complementary to a qualitative work (e.g.
[10]) performed previously. In addition, although the
replication is often desirable in experimental studies, it is
not a major problem in the context of our study due to the
nature of our investigation. Design patterns are generic
solutions and, as a consequence, exhibit similar structures
across the different kinds of applications where they are
used.

7 Related Work

There is a few related work focusing either on the
quantitative assessment of aspect-oriented solutions in

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 14

general, or on the empirical investigation of using aspects
to modularize crosscutting concerns of classical design
patterns. Up to now, most empirical studies involving
aspects rest on subjective criteria and qualitative investi-
gation. One of the first case studies was conducted by
Kersten and Murphy [13]. They have built a web-based
learning system using AspectJ. In this study, they have
discussed the effect of aspects on their object-oriented
practices and described some rules and policies they
employed to achieve their goals of modifiability and
maintainability using aspects. Since several design pat-
terns were used in the design of the system, they have
considered which of them should be expressed as classes
and which should be expressed as aspects. They have
found that Builder, Composite, Façade, and Strategy
patterns [6] were more easily expressed as classes, once
these patterns were had little or no crosscutting proper-
ties. We have found here a similar result for the Strategy
pattern (Section 5.2).

Soares et al [20] have reported their experience using
AspectJ to implement distribution and persistence aspects
in a web-based information system. They have imple-
mented the system in Java and restructured it with As-
pectJ. They have argued that the AspectJ implementation
of the system bring significant advantages with the corre-
sponding pure Java implementation. Walker et al. [22]
have conducted two exploratory experiments to study the
increased modularization provided by AspectJ. In these
experiments, they have compared the performance of a
small number of participants working on two common
programming tasks: debugging and changing. However,
these studies are qualitative assessments, which are not
focused on the use of aspects for modularizing pattern-
related concerns.

Garcia et al. [8] have presented a quantitative study
designed to compare the maintenance and reuse support
of a pattern-oriented approach and an aspect-oriented
approach for a multi-agent system development. They
used an assessment framework that includes the same
metrics suite used in our study. The results have shown
that, for the system at hand, the aspect-oriented approach
allowed the construction of this system with improved
structuring for reuse and maintenance of the multi-agent
system concerns. The use of aspects resulted in better
separation of concerns, lower coupling between its com-
ponents (although less cohesive), and fewer lines of code.
However, their study is also not focused on the use of
aspects to isolate the crosscutting concerns relative to
classical design patterns.

8 Final Remarks and Future Work

This paper presented a comparative study comparing

the aspect-oriented and object-oriented implementations
of a representative set of GoF patterns. The results have
shown that most aspect-oriented implementations pro-
vided improved separation of concerns. However, some
patterns resulted in higher coupled components, more
complex comperations and more LOCs in the aspect-
oriented solutions. Another important conclusion of this
study is that SoC can not be taken as the only factor to
conclude for the use of aspects. It must be analyzed in
conjunction with other important factors, including cou-
pling, cohesion and size. Sometimes, the separation
achieved with aspects can generate more complicated
designs. However, since this is a first exploratory study,
to further confirm the findings, other rigorous and con-
trolled experiments are needed.

It is important to notice that, from this experience, es-
pecially in a non-rigorous area such as software engineer-
ing, general conclusions cannot be drawn. The scope of
our experience is indeed limited to (a) the patterns se-
lected for this comparative study, (b) the specific imple-
mentations from the GoF book [6] and Hannemann and
Kiczales’ study [10], (c) the Java and AspectJ program-
ming language, and (d) a given subset of application
scenarios that were taken from our development back-
ground. However, the goal was to provide some evidence
for a more general discussion of what benefits and dan-
gers the use of aspect-oriented abstractions might create,
as well as what and when features of the aspect-oriented
paradigm might be useful for the modularization of clas-
sical design patterns. Finally, it should also be noted that
properties such as reliability and understandability must
be also examined before one could establish preference
recommendations of one approach relative to the other.
We are planning now to perform a quantitative assess-
ment of the combined use of design patterns in the devel-
opment of different application contexts; this paper fo-
cused on the separate assessment of each design pattern.

Acknowledgements

We would like to thank Jan Hannemann and Gregor
Kiczales for making the pattern implementations avail-
able. This work has been partially supported by CNPq
under grant No. 140214/2004-6 for Cláudio, and under
grant No. 140252/2003-7 for Uirá. Alessandro was sup-
ported by FAPERJ under grant No. E-26/150.699/2002.
The authors are also supported by ESSMA Project under
grant 552068/2002-0 and by the art. 1st of Decree num-
ber 3.800, of 04.20.2001.

References

[1] P. Alencar et al. A Query-Based Approach for
Aspect Measurement and Analysis. TR CS-
2004-13, School of Computer Science, Univer-

Claudio Sant’Anna, Alessandro Garcia, Design Patterns as Aspects:

Uirá Kulesza, Carlos Lucena, Arndt von Staa A Quantitative Assessment

 15

sity of Waterloo, Canada, February 2004

[2] AspectJ Team. The AspectJ Programming
Guide. http://eclipse.org/aspectj/, December
2003.

[3] V. Basili, R. Selby, D. Hutchins. Experimenta-
tion in Software Engineering. IEEE Transactions
on Software Engineering, SE-12:733-743, 1986.

[4] S. Chidamber, C. Kemerer. A Metrics Suite for
Object Oriented Design. IEEE Transactions on
Software Engineering, 20(6):476-493, June
1994.

[5] N. Fenton, S. Pfleeger. Software Metrics: A
Rigorous Practical Approach. London: PWS,
1997.

[6] E. Gamma et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, Reading, 1995.

[7] A. Garcia. From Objects to Agents: An Aspect-
Oriented Approach. Doctoral Thesis, PUC-Rio,
Computer Science Department, Rio de Janeiro,
Brazil, April 2004.

[8] A. Garcia et al. Separation of Concerns in Multi-
Agent Systems: An Empirical Study. In C. Lu-
cena et al (eds.) Software Engineering for Multi-
Agent Systems II, pages 49-71, Springer, LNCS
2940, January 2004.

[9] A. Garcia, V. Silva, C. Chavez, C. Lucena. En-
gineering Multi-Agent Systems with Aspects
and Patterns. Journal of the Brazilian Computer
Society, 1(8):57-72, July 2002.

[10] J. Hannemann, G. Kiczales. Design Pattern Im-
plementation in Java and AspectJ. In Proceed-
ings of OOPSLA’02, pages 161-173, November
2002.

[11] B. Henderson-Sellers. Object-Oriented Metrics:
Measures of Complexity. Prentice Hall, 1996.

[12] Java Reference Documentation.
http://java.sun.com/reference/docs/index.html,
February 2004.

[13] A. Kersten, G. Murphy. Atlas: A Case Study in
Building a Web-based learning environment
using aspect-oriented programming. In Proceed-
ings of OOPSLA’99, pages 340-352, November
1999.

[14] G. Kiczales et al. Aspect-Oriented Programming.
In Proceedings of ECOOP’97, LNCS (1241),
Springer-Verlag, Finland, pages 220-242, June
1997.

[15] B. Kitchenham. Evaluating Software Engineer-
ing methods and tools, Part 1: The Evaluation
Context and Evaluation Methods. ACM SIG-
SOFT Software Engineering Notes, 21(1):11-15,
1996.

[16] M. Lippert, C. Lopes. A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming. In Proceedings of ICSE’00, pages
418�427, May 2000.

[17] C. Lopes. D: A Language Framework for Dis-
tributed Programming. PhD Thesis, Northeastern
University, 1997.

[18] C. Sant’Anna. Maintainability and Reusability of
Aspect-Oriented Software: An Assessment
Framework. Masters Thesis, PUC-Rio, March
2004 (in Portuguese).

[19] C. Sant’Anna et al. On the Reuse and Mainte-
nance of Aspect-Oriented Software: An Assess-
ment Framework. In Proceedings of the 17o
Brazilian Symposium on Software Engineering,
pages 19-34, October 2003.

[20] S. Soares, E. Laureano, P. Borba. Implementing
Distribution and Persistence Aspects with As-
pectJ. In Proceedings of OOPSLA’02, pages
174-190, 2002.

[21] P. Tarr et al. N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In Pro-
ceedings of ICSE’99, pp. 107-119, May 1999.

[22] R. Walker, E. Baniassad, G. Murphy. An Initial
Assessment of Aspect-oriented Programming. In
Proceedings of ICSE’99, pages 120-130, May
1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

